207 lines
5.8 KiB
C++
207 lines
5.8 KiB
C++
/*
|
|
boost/numeric/odeint/stepper/detail/adaptive_adams_coefficients.hpp
|
|
|
|
[begin_description]
|
|
Calculation of the coefficients for the adaptive adams stepper.
|
|
[end_description]
|
|
|
|
Copyright 2017 Valentin Noah Hartmann
|
|
|
|
Distributed under the Boost Software License, Version 1.0.
|
|
(See accompanying file LICENSE_1_0.txt or
|
|
copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
*/
|
|
|
|
#ifndef BOOST_NUMERIC_ODEINT_STEPPER_DETAIL_ADAPTIVE_ADAMS_COEFFICIENTS_HPP_INCLUDED
|
|
#define BOOST_NUMERIC_ODEINT_STEPPER_DETAIL_ADAPTIVE_ADAMS_COEFFICIENTS_HPP_INCLUDED
|
|
|
|
#include <boost/numeric/odeint/stepper/detail/rotating_buffer.hpp>
|
|
|
|
#include <boost/numeric/odeint/util/state_wrapper.hpp>
|
|
#include <boost/numeric/odeint/util/is_resizeable.hpp>
|
|
#include <boost/numeric/odeint/util/resizer.hpp>
|
|
|
|
#include <boost/numeric/odeint/util/unwrap_reference.hpp>
|
|
#include <boost/numeric/odeint/util/bind.hpp>
|
|
|
|
#include <boost/numeric/odeint/algebra/algebra_dispatcher.hpp>
|
|
#include <boost/numeric/odeint/algebra/operations_dispatcher.hpp>
|
|
|
|
#include <array>
|
|
|
|
namespace boost {
|
|
namespace numeric {
|
|
namespace odeint {
|
|
namespace detail {
|
|
|
|
template<
|
|
size_t Steps,
|
|
class Deriv,
|
|
class Value = double,
|
|
class Time = double,
|
|
class Algebra = typename algebra_dispatcher< Deriv >::algebra_type,
|
|
class Operations = typename operations_dispatcher< Deriv >::operations_type,
|
|
class Resizer = initially_resizer
|
|
>
|
|
class adaptive_adams_coefficients
|
|
{
|
|
public:
|
|
static const size_t steps = Steps;
|
|
|
|
typedef unsigned short order_type;
|
|
static const order_type order_value = steps;
|
|
|
|
typedef Value value_type;
|
|
typedef Deriv deriv_type;
|
|
typedef Time time_type;
|
|
|
|
typedef state_wrapper< deriv_type > wrapped_deriv_type;
|
|
typedef rotating_buffer< time_type , steps+1 > time_storage_type;
|
|
|
|
typedef Algebra algebra_type;
|
|
typedef Operations operations_type;
|
|
typedef Resizer resizer_type;
|
|
|
|
typedef adaptive_adams_coefficients< Steps , Deriv , Value , Time , Algebra , Operations , Resizer > aac_type;
|
|
|
|
adaptive_adams_coefficients( const algebra_type &algebra = algebra_type())
|
|
:m_eo(1), m_steps_init(1), beta(), phi(), m_ns(0), m_time_storage(),
|
|
m_algebra(algebra),
|
|
m_phi_resizer()
|
|
{
|
|
for (size_t i=0; i<order_value+2; ++i)
|
|
{
|
|
c[i] = 1.0/(i+1);
|
|
c[c_size+i] = 1.0/((i+1)*(i+2));
|
|
}
|
|
|
|
g[0] = c[0];
|
|
g[1] = c[c_size];
|
|
|
|
beta[0][0] = 1;
|
|
beta[1][0] = 1;
|
|
|
|
gs[0] = 1.0;
|
|
gs[1] = -1.0/2;
|
|
gs[2] = -1.0/12;
|
|
gs[3] = -1.0/24;
|
|
gs[4] = -19.0/720;
|
|
gs[5] = -3.0/160;
|
|
gs[6] = -863.0/60480;
|
|
gs[7] = -275.0/24192;
|
|
gs[8] = -33953.0/3628800;
|
|
gs[9] = 35.0/4436;
|
|
gs[10] = 40.0/5891;
|
|
gs[11] = 37.0/6250;
|
|
gs[12] = 25.0/4771;
|
|
gs[13] = 40.0/8547;
|
|
};
|
|
|
|
void predict(time_type t, time_type dt)
|
|
{
|
|
using std::abs;
|
|
|
|
m_time_storage[0] = t;
|
|
|
|
if (abs(m_time_storage[0] - m_time_storage[1] - dt) > 1e-16 || m_eo >= m_ns)
|
|
{
|
|
m_ns = 0;
|
|
}
|
|
else if (m_ns < order_value + 2)
|
|
{
|
|
m_ns++;
|
|
}
|
|
|
|
for(size_t i=1+m_ns; i<m_eo+1 && i<m_steps_init; ++i)
|
|
{
|
|
time_type diff = m_time_storage[0] - m_time_storage[i];
|
|
beta[0][i] = beta[0][i-1]*(m_time_storage[0] + dt - m_time_storage[i-1])/diff;
|
|
}
|
|
|
|
for(size_t i=2+m_ns; i<m_eo+2 && i<m_steps_init+1; ++i)
|
|
{
|
|
time_type diff = m_time_storage[0] + dt - m_time_storage[i-1];
|
|
for(size_t j=0; j<m_eo+1-i+1; ++j)
|
|
{
|
|
c[c_size*i+j] = c[c_size*(i-1)+j] - c[c_size*(i-1)+j+1]*dt/diff;
|
|
}
|
|
|
|
g[i] = c[c_size*i];
|
|
}
|
|
};
|
|
|
|
void do_step(const deriv_type &dxdt, const int o = 0)
|
|
{
|
|
m_phi_resizer.adjust_size(dxdt, [this](auto&& arg) { return this->resize_phi_impl<deriv_type>(std::forward<decltype(arg)>(arg)); });
|
|
|
|
phi[o][0].m_v = dxdt;
|
|
|
|
for(size_t i=1; i<m_eo+3 && i<m_steps_init+2 && i<order_value+2; ++i)
|
|
{
|
|
if (o == 0)
|
|
{
|
|
this->m_algebra.for_each3(phi[o][i].m_v, phi[o][i-1].m_v, phi[o+1][i-1].m_v,
|
|
typename Operations::template scale_sum2<value_type, value_type>(1.0, -beta[o][i-1]));
|
|
}
|
|
else
|
|
{
|
|
this->m_algebra.for_each2(phi[o][i].m_v, phi[o][i-1].m_v,
|
|
typename Operations::template scale_sum1<value_type>(1.0));
|
|
}
|
|
}
|
|
};
|
|
|
|
void confirm()
|
|
{
|
|
beta.rotate();
|
|
phi.rotate();
|
|
m_time_storage.rotate();
|
|
|
|
if(m_steps_init < order_value+1)
|
|
{
|
|
++m_steps_init;
|
|
}
|
|
};
|
|
|
|
void reset() { m_eo = 1; m_steps_init = 1; };
|
|
|
|
size_t m_eo;
|
|
size_t m_steps_init;
|
|
|
|
rotating_buffer<std::array<value_type, order_value+1>, 2> beta; // beta[0] = beta(n)
|
|
rotating_buffer<std::array<wrapped_deriv_type, order_value+2>, 3> phi; // phi[0] = phi(n+1)
|
|
std::array<value_type, order_value + 2> g;
|
|
std::array<value_type, 14> gs;
|
|
|
|
private:
|
|
template< class StateType >
|
|
bool resize_phi_impl( const StateType &x )
|
|
{
|
|
bool resized( false );
|
|
|
|
for(size_t i=0; i<(order_value + 2); ++i)
|
|
{
|
|
resized |= adjust_size_by_resizeability( phi[0][i], x, typename is_resizeable<deriv_type>::type() );
|
|
resized |= adjust_size_by_resizeability( phi[1][i], x, typename is_resizeable<deriv_type>::type() );
|
|
resized |= adjust_size_by_resizeability( phi[2][i], x, typename is_resizeable<deriv_type>::type() );
|
|
}
|
|
return resized;
|
|
};
|
|
|
|
size_t m_ns;
|
|
|
|
time_storage_type m_time_storage;
|
|
static const size_t c_size = order_value + 2;
|
|
std::array<value_type, c_size*c_size> c;
|
|
|
|
algebra_type m_algebra;
|
|
|
|
resizer_type m_phi_resizer;
|
|
};
|
|
|
|
} // detail
|
|
} // odeint
|
|
} // numeric
|
|
} // boost
|
|
|
|
#endif |