gnss-sim/3rdparty/boost/math/optimization/detail/common.hpp

201 lines
8.4 KiB
C++

/*
* Copyright Nick Thompson, 2024
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_MATH_OPTIMIZATION_DETAIL_COMMON_HPP
#define BOOST_MATH_OPTIMIZATION_DETAIL_COMMON_HPP
#include <algorithm> // for std::sort
#include <cmath>
#include <limits>
#include <sstream>
#include <stdexcept>
#include <random>
#include <type_traits> // for std::false_type
namespace boost::math::optimization::detail {
template <typename T, typename = void> struct has_resize : std::false_type {};
template <typename T>
struct has_resize<T, std::void_t<decltype(std::declval<T>().resize(size_t{}))>> : std::true_type {};
template <typename T> constexpr bool has_resize_v = has_resize<T>::value;
template <typename ArgumentContainer>
void validate_bounds(ArgumentContainer const &lower_bounds, ArgumentContainer const &upper_bounds) {
using std::isfinite;
std::ostringstream oss;
if (lower_bounds.size() == 0) {
oss << __FILE__ << ":" << __LINE__ << ":" << __func__;
oss << ": The dimension of the problem cannot be zero.";
throw std::domain_error(oss.str());
}
if (upper_bounds.size() != lower_bounds.size()) {
oss << __FILE__ << ":" << __LINE__ << ":" << __func__;
oss << ": There must be the same number of lower bounds as upper bounds, but given ";
oss << upper_bounds.size() << " upper bounds, and " << lower_bounds.size() << " lower bounds.";
throw std::domain_error(oss.str());
}
for (size_t i = 0; i < lower_bounds.size(); ++i) {
auto lb = lower_bounds[i];
auto ub = upper_bounds[i];
if (lb > ub) {
oss << __FILE__ << ":" << __LINE__ << ":" << __func__;
oss << ": The upper bound must be greater than or equal to the lower bound, but the upper bound is " << ub
<< " and the lower is " << lb << ".";
throw std::domain_error(oss.str());
}
if (!isfinite(lb)) {
oss << __FILE__ << ":" << __LINE__ << ":" << __func__;
oss << ": The lower bound must be finite, but got " << lb << ".";
oss << " For infinite bounds, emulate with std::numeric_limits<Real>::lower() or use a standard infinite->finite "
"transform.";
throw std::domain_error(oss.str());
}
if (!isfinite(ub)) {
oss << __FILE__ << ":" << __LINE__ << ":" << __func__;
oss << ": The upper bound must be finite, but got " << ub << ".";
oss << " For infinite bounds, emulate with std::numeric_limits<Real>::max() or use a standard infinite->finite "
"transform.";
throw std::domain_error(oss.str());
}
}
}
template <typename ArgumentContainer, class URBG>
std::vector<ArgumentContainer> random_initial_population(ArgumentContainer const &lower_bounds,
ArgumentContainer const &upper_bounds,
size_t initial_population_size, URBG &&gen) {
using Real = typename ArgumentContainer::value_type;
using DimensionlessReal = decltype(Real()/Real());
constexpr bool has_resize = detail::has_resize_v<ArgumentContainer>;
std::vector<ArgumentContainer> population(initial_population_size);
auto const dimension = lower_bounds.size();
for (size_t i = 0; i < population.size(); ++i) {
if constexpr (has_resize) {
population[i].resize(dimension);
} else {
// Argument type must be known at compile-time; like std::array:
if (population[i].size() != dimension) {
std::ostringstream oss;
oss << __FILE__ << ":" << __LINE__ << ":" << __func__;
oss << ": For containers which do not have resize, the default size must be the same as the dimension, ";
oss << "but the default container size is " << population[i].size() << " and the dimension of the problem is "
<< dimension << ".";
oss << " The function argument container type is " << typeid(ArgumentContainer).name() << ".\n";
throw std::runtime_error(oss.str());
}
}
}
// Why don't we provide an option to initialize with (say) a Gaussian distribution?
// > If the optimum's location is fairly well known,
// > a Gaussian distribution may prove somewhat faster, although it
// > may also increase the probability that the population will converge prematurely.
// > In general, uniform distributions are preferred, since they best reflect
// > the lack of knowledge about the optimum's location.
// - Differential Evolution: A Practical Approach to Global Optimization
// That said, scipy uses Latin Hypercube sampling and says self-avoiding sequences are preferable.
// So this is something that could be investigated and potentially improved.
using std::uniform_real_distribution;
uniform_real_distribution<DimensionlessReal> dis(DimensionlessReal(0), DimensionlessReal(1));
for (size_t i = 0; i < population.size(); ++i) {
for (size_t j = 0; j < dimension; ++j) {
auto const &lb = lower_bounds[j];
auto const &ub = upper_bounds[j];
population[i][j] = lb + dis(gen) * (ub - lb);
}
}
return population;
}
template <typename ArgumentContainer>
void validate_initial_guess(ArgumentContainer const &initial_guess, ArgumentContainer const &lower_bounds,
ArgumentContainer const &upper_bounds) {
using std::isfinite;
std::ostringstream oss;
auto const dimension = lower_bounds.size();
if (initial_guess.size() != dimension) {
oss << __FILE__ << ":" << __LINE__ << ":" << __func__;
oss << ": The initial guess must have the same dimensions as the problem,";
oss << ", but the problem size is " << dimension << " and the initial guess has " << initial_guess.size()
<< " elements.";
throw std::domain_error(oss.str());
}
for (size_t i = 0; i < dimension; ++i) {
auto lb = lower_bounds[i];
auto ub = upper_bounds[i];
if (!isfinite(initial_guess[i])) {
oss << __FILE__ << ":" << __LINE__ << ":" << __func__;
oss << ": At index " << i << ", the initial guess is " << initial_guess[i]
<< ", make sure all elements of the initial guess are finite.";
throw std::domain_error(oss.str());
}
if (initial_guess[i] < lb || initial_guess[i] > ub) {
oss << __FILE__ << ":" << __LINE__ << ":" << __func__;
oss << ": At index " << i << " the initial guess " << initial_guess[i] << " is not in the bounds [" << lb << ", "
<< ub << "].";
throw std::domain_error(oss.str());
}
}
}
// Return indices corresponding to the minimum function values.
template <typename Real> std::vector<size_t> best_indices(std::vector<Real> const &function_values) {
using std::isnan;
const size_t n = function_values.size();
std::vector<size_t> indices(n);
for (size_t i = 0; i < n; ++i) {
indices[i] = i;
}
std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
if (isnan(function_values[a])) {
return false;
}
if (isnan(function_values[b])) {
return true;
}
return function_values[a] < function_values[b];
});
return indices;
}
template<typename RandomAccessContainer>
auto weighted_lehmer_mean(RandomAccessContainer const & values, RandomAccessContainer const & weights) {
using std::isfinite;
if (values.size() != weights.size()) {
std::ostringstream oss;
oss << __FILE__ << ":" << __LINE__ << ":" << __func__;
oss << ": There must be the same number of weights as values, but got " << values.size() << " values and " << weights.size() << " weights.";
throw std::logic_error(oss.str());
}
if (values.size() == 0) {
std::ostringstream oss;
oss << __FILE__ << ":" << __LINE__ << ":" << __func__;
oss << ": There must at least one value provided.";
throw std::logic_error(oss.str());
}
using Real = typename RandomAccessContainer::value_type;
Real numerator = 0;
Real denominator = 0;
for (size_t i = 0; i < values.size(); ++i) {
if (weights[i] < 0 || !isfinite(weights[i])) {
std::ostringstream oss;
oss << __FILE__ << ":" << __LINE__ << ":" << __func__;
oss << ": All weights must be positive and finite, but got received weight " << weights[i] << " at index " << i << " of " << weights.size() << ".";
throw std::domain_error(oss.str());
}
Real tmp = weights[i]*values[i];
numerator += tmp*values[i];
denominator += tmp;
}
return numerator/denominator;
}
} // namespace boost::math::optimization::detail
#endif