gnss-sim/3rdparty/boost/math/interpolators/detail/cubic_hermite_detail.hpp

439 lines
12 KiB
C++

// Copyright Nick Thompson, 2020
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_INTERPOLATORS_DETAIL_CUBIC_HERMITE_DETAIL_HPP
#define BOOST_MATH_INTERPOLATORS_DETAIL_CUBIC_HERMITE_DETAIL_HPP
#include <stdexcept>
#include <algorithm>
#include <cmath>
#include <iostream>
#include <sstream>
#include <limits>
namespace boost {
namespace math {
namespace interpolators {
namespace detail {
template<class RandomAccessContainer>
class cubic_hermite_detail {
public:
using Real = typename RandomAccessContainer::value_type;
using Size = typename RandomAccessContainer::size_type;
cubic_hermite_detail(RandomAccessContainer && x, RandomAccessContainer && y, RandomAccessContainer dydx)
: x_{std::move(x)}, y_{std::move(y)}, dydx_{std::move(dydx)}
{
using std::abs;
using std::isnan;
if (x_.size() != y_.size())
{
throw std::domain_error("There must be the same number of ordinates as abscissas.");
}
if (x_.size() != dydx_.size())
{
throw std::domain_error("There must be the same number of ordinates as derivative values.");
}
if (x_.size() < 2)
{
throw std::domain_error("Must be at least two data points.");
}
Real x0 = x_[0];
for (size_t i = 1; i < x_.size(); ++i)
{
Real x1 = x_[i];
if (x1 <= x0)
{
std::ostringstream oss;
oss.precision(std::numeric_limits<Real>::digits10+3);
oss << "Abscissas must be listed in strictly increasing order x0 < x1 < ... < x_{n-1}, ";
oss << "but at x[" << i - 1 << "] = " << x0 << ", and x[" << i << "] = " << x1 << ".\n";
throw std::domain_error(oss.str());
}
x0 = x1;
}
}
void push_back(Real x, Real y, Real dydx)
{
using std::abs;
using std::isnan;
if (x <= x_.back())
{
throw std::domain_error("Calling push_back must preserve the monotonicity of the x's");
}
x_.push_back(x);
y_.push_back(y);
dydx_.push_back(dydx);
}
Real operator()(Real x) const
{
if (x < x_[0] || x > x_.back())
{
std::ostringstream oss;
oss.precision(std::numeric_limits<Real>::digits10+3);
oss << "Requested abscissa x = " << x << ", which is outside of allowed range ["
<< x_[0] << ", " << x_.back() << "]";
throw std::domain_error(oss.str());
}
// We need t := (x-x_k)/(x_{k+1}-x_k) \in [0,1) for this to work.
// Sadly this neccessitates this loathesome check, otherwise we get t = 1 at x = xf.
if (x == x_.back())
{
return y_.back();
}
auto it = std::upper_bound(x_.begin(), x_.end(), x);
auto i = std::distance(x_.begin(), it) -1;
Real x0 = *(it-1);
Real x1 = *it;
Real y0 = y_[i];
Real y1 = y_[i+1];
Real s0 = dydx_[i];
Real s1 = dydx_[i+1];
Real dx = (x1-x0);
Real t = (x-x0)/dx;
// See the section 'Representations' in the page
// https://en.wikipedia.org/wiki/Cubic_Hermite_spline
Real y = (1-t)*(1-t)*(y0*(1+2*t) + s0*(x-x0))
+ t*t*(y1*(3-2*t) + dx*s1*(t-1));
return y;
}
Real prime(Real x) const
{
if (x < x_[0] || x > x_.back())
{
std::ostringstream oss;
oss.precision(std::numeric_limits<Real>::digits10+3);
oss << "Requested abscissa x = " << x << ", which is outside of allowed range ["
<< x_[0] << ", " << x_.back() << "]";
throw std::domain_error(oss.str());
}
if (x == x_.back())
{
return dydx_.back();
}
auto it = std::upper_bound(x_.begin(), x_.end(), x);
auto i = std::distance(x_.begin(), it) -1;
Real x0 = *(it-1);
Real x1 = *it;
Real y0 = y_[i];
Real y1 = y_[i+1];
Real s0 = dydx_[i];
Real s1 = dydx_[i+1];
Real dx = (x1-x0);
Real d1 = (y1 - y0 - s0*dx)/(dx*dx);
Real d2 = (s1 - s0)/(2*dx);
Real c2 = 3*d1 - 2*d2;
Real c3 = 2*(d2 - d1)/dx;
return s0 + 2*c2*(x-x0) + 3*c3*(x-x0)*(x-x0);
}
friend std::ostream& operator<<(std::ostream & os, const cubic_hermite_detail & m)
{
os << "(x,y,y') = {";
for (size_t i = 0; i < m.x_.size() - 1; ++i)
{
os << "(" << m.x_[i] << ", " << m.y_[i] << ", " << m.dydx_[i] << "), ";
}
auto n = m.x_.size()-1;
os << "(" << m.x_[n] << ", " << m.y_[n] << ", " << m.dydx_[n] << ")}";
return os;
}
Size size() const
{
return x_.size();
}
int64_t bytes() const
{
return 3*x_.size()*sizeof(Real) + 3*sizeof(x_);
}
std::pair<Real, Real> domain() const
{
return {x_.front(), x_.back()};
}
RandomAccessContainer x_;
RandomAccessContainer y_;
RandomAccessContainer dydx_;
};
template<class RandomAccessContainer>
class cardinal_cubic_hermite_detail {
public:
using Real = typename RandomAccessContainer::value_type;
using Size = typename RandomAccessContainer::size_type;
cardinal_cubic_hermite_detail(RandomAccessContainer && y, RandomAccessContainer dydx, Real x0, Real dx)
: y_{std::move(y)}, dy_{std::move(dydx)}, x0_{x0}, inv_dx_{1/dx}
{
using std::abs;
using std::isnan;
if (y_.size() != dy_.size())
{
throw std::domain_error("There must be the same number of derivatives as ordinates.");
}
if (y_.size() < 2)
{
throw std::domain_error("Must be at least two data points.");
}
if (dx <= 0)
{
throw std::domain_error("dx > 0 is required.");
}
for (auto & dy : dy_)
{
dy *= dx;
}
}
// Why not implement push_back? It's awkward: If the buffer is circular, x0_ += dx_.
// If the buffer is not circular, x0_ is unchanged.
// We need a concept for circular_buffer!
inline Real operator()(Real x) const
{
const Real xf = x0_ + (y_.size()-1)/inv_dx_;
if (x < x0_ || x > xf)
{
std::ostringstream oss;
oss.precision(std::numeric_limits<Real>::digits10+3);
oss << "Requested abscissa x = " << x << ", which is outside of allowed range ["
<< x0_ << ", " << xf << "]";
throw std::domain_error(oss.str());
}
if (x == xf)
{
return y_.back();
}
return this->unchecked_evaluation(x);
}
inline Real unchecked_evaluation(Real x) const
{
using std::floor;
Real s = (x-x0_)*inv_dx_;
Real ii = floor(s);
auto i = static_cast<decltype(y_.size())>(ii);
Real t = s - ii;
Real y0 = y_[i];
Real y1 = y_[i+1];
Real dy0 = dy_[i];
Real dy1 = dy_[i+1];
Real r = 1-t;
return r*r*(y0*(1+2*t) + dy0*t)
+ t*t*(y1*(3-2*t) - dy1*r);
}
inline Real prime(Real x) const
{
const Real xf = x0_ + (y_.size()-1)/inv_dx_;
if (x < x0_ || x > xf)
{
std::ostringstream oss;
oss.precision(std::numeric_limits<Real>::digits10+3);
oss << "Requested abscissa x = " << x << ", which is outside of allowed range ["
<< x0_ << ", " << xf << "]";
throw std::domain_error(oss.str());
}
if (x == xf)
{
return dy_.back()*inv_dx_;
}
return this->unchecked_prime(x);
}
inline Real unchecked_prime(Real x) const
{
using std::floor;
Real s = (x-x0_)*inv_dx_;
Real ii = floor(s);
auto i = static_cast<decltype(y_.size())>(ii);
Real t = s - ii;
Real y0 = y_[i];
Real y1 = y_[i+1];
Real dy0 = dy_[i];
Real dy1 = dy_[i+1];
Real dy = 6*t*(1-t)*(y1 - y0) + (3*t*t - 4*t+1)*dy0 + t*(3*t-2)*dy1;
return dy*inv_dx_;
}
Size size() const
{
return y_.size();
}
int64_t bytes() const
{
return 2*y_.size()*sizeof(Real) + 2*sizeof(y_) + 2*sizeof(Real);
}
std::pair<Real, Real> domain() const
{
Real xf = x0_ + (y_.size()-1)/inv_dx_;
return {x0_, xf};
}
private:
RandomAccessContainer y_;
RandomAccessContainer dy_;
Real x0_;
Real inv_dx_;
};
template<class RandomAccessContainer>
class cardinal_cubic_hermite_detail_aos {
public:
using Point = typename RandomAccessContainer::value_type;
using Real = typename Point::value_type;
using Size = typename RandomAccessContainer::size_type;
cardinal_cubic_hermite_detail_aos(RandomAccessContainer && dat, Real x0, Real dx)
: dat_{std::move(dat)}, x0_{x0}, inv_dx_{1/dx}
{
if (dat_.size() < 2)
{
throw std::domain_error("Must be at least two data points.");
}
if (dat_[0].size() != 2)
{
throw std::domain_error("Each datum must contain (y, y'), and nothing else.");
}
if (dx <= 0)
{
throw std::domain_error("dx > 0 is required.");
}
for (auto & d : dat_)
{
d[1] *= dx;
}
}
inline Real operator()(Real x) const
{
const Real xf = x0_ + (dat_.size()-1)/inv_dx_;
if (x < x0_ || x > xf)
{
std::ostringstream oss;
oss.precision(std::numeric_limits<Real>::digits10+3);
oss << "Requested abscissa x = " << x << ", which is outside of allowed range ["
<< x0_ << ", " << xf << "]";
throw std::domain_error(oss.str());
}
if (x == xf)
{
return dat_.back()[0];
}
return this->unchecked_evaluation(x);
}
inline Real unchecked_evaluation(Real x) const
{
using std::floor;
Real s = (x-x0_)*inv_dx_;
Real ii = floor(s);
auto i = static_cast<decltype(dat_.size())>(ii);
Real t = s - ii;
// If we had infinite precision, this would never happen.
// But we don't have infinite precision.
if (t == 0)
{
return dat_[i][0];
}
Real y0 = dat_[i][0];
Real y1 = dat_[i+1][0];
Real dy0 = dat_[i][1];
Real dy1 = dat_[i+1][1];
Real r = 1-t;
return r*r*(y0*(1+2*t) + dy0*t)
+ t*t*(y1*(3-2*t) - dy1*r);
}
inline Real prime(Real x) const
{
const Real xf = x0_ + (dat_.size()-1)/inv_dx_;
if (x < x0_ || x > xf)
{
std::ostringstream oss;
oss.precision(std::numeric_limits<Real>::digits10+3);
oss << "Requested abscissa x = " << x << ", which is outside of allowed range ["
<< x0_ << ", " << xf << "]";
throw std::domain_error(oss.str());
}
if (x == xf)
{
return dat_.back()[1]*inv_dx_;
}
return this->unchecked_prime(x);
}
inline Real unchecked_prime(Real x) const
{
using std::floor;
Real s = (x-x0_)*inv_dx_;
Real ii = floor(s);
auto i = static_cast<decltype(dat_.size())>(ii);
Real t = s - ii;
if (t == 0)
{
return dat_[i][1]*inv_dx_;
}
Real y0 = dat_[i][0];
Real dy0 = dat_[i][1];
Real y1 = dat_[i+1][0];
Real dy1 = dat_[i+1][1];
Real dy = 6*t*(1-t)*(y1 - y0) + (3*t*t - 4*t+1)*dy0 + t*(3*t-2)*dy1;
return dy*inv_dx_;
}
Size size() const
{
return dat_.size();
}
int64_t bytes() const
{
return dat_.size()*dat_[0].size()*sizeof(Real) + sizeof(dat_) + 2*sizeof(Real);
}
std::pair<Real, Real> domain() const
{
Real xf = x0_ + (dat_.size()-1)/inv_dx_;
return {x0_, xf};
}
private:
RandomAccessContainer dat_;
Real x0_;
Real inv_dx_;
};
}
}
}
}
#endif