439 lines
12 KiB
C++
439 lines
12 KiB
C++
// Copyright Nick Thompson, 2020
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0.
|
|
// (See accompanying file LICENSE_1_0.txt
|
|
// or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#ifndef BOOST_MATH_INTERPOLATORS_DETAIL_CUBIC_HERMITE_DETAIL_HPP
|
|
#define BOOST_MATH_INTERPOLATORS_DETAIL_CUBIC_HERMITE_DETAIL_HPP
|
|
#include <stdexcept>
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <iostream>
|
|
#include <sstream>
|
|
#include <limits>
|
|
|
|
namespace boost {
|
|
namespace math {
|
|
namespace interpolators {
|
|
namespace detail {
|
|
|
|
template<class RandomAccessContainer>
|
|
class cubic_hermite_detail {
|
|
public:
|
|
using Real = typename RandomAccessContainer::value_type;
|
|
using Size = typename RandomAccessContainer::size_type;
|
|
|
|
cubic_hermite_detail(RandomAccessContainer && x, RandomAccessContainer && y, RandomAccessContainer dydx)
|
|
: x_{std::move(x)}, y_{std::move(y)}, dydx_{std::move(dydx)}
|
|
{
|
|
using std::abs;
|
|
using std::isnan;
|
|
if (x_.size() != y_.size())
|
|
{
|
|
throw std::domain_error("There must be the same number of ordinates as abscissas.");
|
|
}
|
|
if (x_.size() != dydx_.size())
|
|
{
|
|
throw std::domain_error("There must be the same number of ordinates as derivative values.");
|
|
}
|
|
if (x_.size() < 2)
|
|
{
|
|
throw std::domain_error("Must be at least two data points.");
|
|
}
|
|
Real x0 = x_[0];
|
|
for (size_t i = 1; i < x_.size(); ++i)
|
|
{
|
|
Real x1 = x_[i];
|
|
if (x1 <= x0)
|
|
{
|
|
std::ostringstream oss;
|
|
oss.precision(std::numeric_limits<Real>::digits10+3);
|
|
oss << "Abscissas must be listed in strictly increasing order x0 < x1 < ... < x_{n-1}, ";
|
|
oss << "but at x[" << i - 1 << "] = " << x0 << ", and x[" << i << "] = " << x1 << ".\n";
|
|
throw std::domain_error(oss.str());
|
|
}
|
|
x0 = x1;
|
|
}
|
|
}
|
|
|
|
void push_back(Real x, Real y, Real dydx)
|
|
{
|
|
using std::abs;
|
|
using std::isnan;
|
|
if (x <= x_.back())
|
|
{
|
|
throw std::domain_error("Calling push_back must preserve the monotonicity of the x's");
|
|
}
|
|
x_.push_back(x);
|
|
y_.push_back(y);
|
|
dydx_.push_back(dydx);
|
|
}
|
|
|
|
Real operator()(Real x) const
|
|
{
|
|
if (x < x_[0] || x > x_.back())
|
|
{
|
|
std::ostringstream oss;
|
|
oss.precision(std::numeric_limits<Real>::digits10+3);
|
|
oss << "Requested abscissa x = " << x << ", which is outside of allowed range ["
|
|
<< x_[0] << ", " << x_.back() << "]";
|
|
throw std::domain_error(oss.str());
|
|
}
|
|
// We need t := (x-x_k)/(x_{k+1}-x_k) \in [0,1) for this to work.
|
|
// Sadly this neccessitates this loathesome check, otherwise we get t = 1 at x = xf.
|
|
if (x == x_.back())
|
|
{
|
|
return y_.back();
|
|
}
|
|
|
|
auto it = std::upper_bound(x_.begin(), x_.end(), x);
|
|
auto i = std::distance(x_.begin(), it) -1;
|
|
Real x0 = *(it-1);
|
|
Real x1 = *it;
|
|
Real y0 = y_[i];
|
|
Real y1 = y_[i+1];
|
|
Real s0 = dydx_[i];
|
|
Real s1 = dydx_[i+1];
|
|
Real dx = (x1-x0);
|
|
Real t = (x-x0)/dx;
|
|
|
|
// See the section 'Representations' in the page
|
|
// https://en.wikipedia.org/wiki/Cubic_Hermite_spline
|
|
Real y = (1-t)*(1-t)*(y0*(1+2*t) + s0*(x-x0))
|
|
+ t*t*(y1*(3-2*t) + dx*s1*(t-1));
|
|
return y;
|
|
}
|
|
|
|
Real prime(Real x) const
|
|
{
|
|
if (x < x_[0] || x > x_.back())
|
|
{
|
|
std::ostringstream oss;
|
|
oss.precision(std::numeric_limits<Real>::digits10+3);
|
|
oss << "Requested abscissa x = " << x << ", which is outside of allowed range ["
|
|
<< x_[0] << ", " << x_.back() << "]";
|
|
throw std::domain_error(oss.str());
|
|
}
|
|
if (x == x_.back())
|
|
{
|
|
return dydx_.back();
|
|
}
|
|
auto it = std::upper_bound(x_.begin(), x_.end(), x);
|
|
auto i = std::distance(x_.begin(), it) -1;
|
|
Real x0 = *(it-1);
|
|
Real x1 = *it;
|
|
Real y0 = y_[i];
|
|
Real y1 = y_[i+1];
|
|
Real s0 = dydx_[i];
|
|
Real s1 = dydx_[i+1];
|
|
Real dx = (x1-x0);
|
|
|
|
Real d1 = (y1 - y0 - s0*dx)/(dx*dx);
|
|
Real d2 = (s1 - s0)/(2*dx);
|
|
Real c2 = 3*d1 - 2*d2;
|
|
Real c3 = 2*(d2 - d1)/dx;
|
|
return s0 + 2*c2*(x-x0) + 3*c3*(x-x0)*(x-x0);
|
|
}
|
|
|
|
|
|
friend std::ostream& operator<<(std::ostream & os, const cubic_hermite_detail & m)
|
|
{
|
|
os << "(x,y,y') = {";
|
|
for (size_t i = 0; i < m.x_.size() - 1; ++i)
|
|
{
|
|
os << "(" << m.x_[i] << ", " << m.y_[i] << ", " << m.dydx_[i] << "), ";
|
|
}
|
|
auto n = m.x_.size()-1;
|
|
os << "(" << m.x_[n] << ", " << m.y_[n] << ", " << m.dydx_[n] << ")}";
|
|
return os;
|
|
}
|
|
|
|
Size size() const
|
|
{
|
|
return x_.size();
|
|
}
|
|
|
|
int64_t bytes() const
|
|
{
|
|
return 3*x_.size()*sizeof(Real) + 3*sizeof(x_);
|
|
}
|
|
|
|
std::pair<Real, Real> domain() const
|
|
{
|
|
return {x_.front(), x_.back()};
|
|
}
|
|
|
|
RandomAccessContainer x_;
|
|
RandomAccessContainer y_;
|
|
RandomAccessContainer dydx_;
|
|
};
|
|
|
|
template<class RandomAccessContainer>
|
|
class cardinal_cubic_hermite_detail {
|
|
public:
|
|
using Real = typename RandomAccessContainer::value_type;
|
|
using Size = typename RandomAccessContainer::size_type;
|
|
|
|
cardinal_cubic_hermite_detail(RandomAccessContainer && y, RandomAccessContainer dydx, Real x0, Real dx)
|
|
: y_{std::move(y)}, dy_{std::move(dydx)}, x0_{x0}, inv_dx_{1/dx}
|
|
{
|
|
using std::abs;
|
|
using std::isnan;
|
|
if (y_.size() != dy_.size())
|
|
{
|
|
throw std::domain_error("There must be the same number of derivatives as ordinates.");
|
|
}
|
|
if (y_.size() < 2)
|
|
{
|
|
throw std::domain_error("Must be at least two data points.");
|
|
}
|
|
if (dx <= 0)
|
|
{
|
|
throw std::domain_error("dx > 0 is required.");
|
|
}
|
|
|
|
for (auto & dy : dy_)
|
|
{
|
|
dy *= dx;
|
|
}
|
|
}
|
|
|
|
// Why not implement push_back? It's awkward: If the buffer is circular, x0_ += dx_.
|
|
// If the buffer is not circular, x0_ is unchanged.
|
|
// We need a concept for circular_buffer!
|
|
|
|
inline Real operator()(Real x) const
|
|
{
|
|
const Real xf = x0_ + (y_.size()-1)/inv_dx_;
|
|
if (x < x0_ || x > xf)
|
|
{
|
|
std::ostringstream oss;
|
|
oss.precision(std::numeric_limits<Real>::digits10+3);
|
|
oss << "Requested abscissa x = " << x << ", which is outside of allowed range ["
|
|
<< x0_ << ", " << xf << "]";
|
|
throw std::domain_error(oss.str());
|
|
}
|
|
if (x == xf)
|
|
{
|
|
return y_.back();
|
|
}
|
|
return this->unchecked_evaluation(x);
|
|
}
|
|
|
|
inline Real unchecked_evaluation(Real x) const
|
|
{
|
|
using std::floor;
|
|
Real s = (x-x0_)*inv_dx_;
|
|
Real ii = floor(s);
|
|
auto i = static_cast<decltype(y_.size())>(ii);
|
|
Real t = s - ii;
|
|
Real y0 = y_[i];
|
|
Real y1 = y_[i+1];
|
|
Real dy0 = dy_[i];
|
|
Real dy1 = dy_[i+1];
|
|
|
|
Real r = 1-t;
|
|
return r*r*(y0*(1+2*t) + dy0*t)
|
|
+ t*t*(y1*(3-2*t) - dy1*r);
|
|
}
|
|
|
|
inline Real prime(Real x) const
|
|
{
|
|
const Real xf = x0_ + (y_.size()-1)/inv_dx_;
|
|
if (x < x0_ || x > xf)
|
|
{
|
|
std::ostringstream oss;
|
|
oss.precision(std::numeric_limits<Real>::digits10+3);
|
|
oss << "Requested abscissa x = " << x << ", which is outside of allowed range ["
|
|
<< x0_ << ", " << xf << "]";
|
|
throw std::domain_error(oss.str());
|
|
}
|
|
if (x == xf)
|
|
{
|
|
return dy_.back()*inv_dx_;
|
|
}
|
|
return this->unchecked_prime(x);
|
|
}
|
|
|
|
inline Real unchecked_prime(Real x) const
|
|
{
|
|
using std::floor;
|
|
Real s = (x-x0_)*inv_dx_;
|
|
Real ii = floor(s);
|
|
auto i = static_cast<decltype(y_.size())>(ii);
|
|
Real t = s - ii;
|
|
Real y0 = y_[i];
|
|
Real y1 = y_[i+1];
|
|
Real dy0 = dy_[i];
|
|
Real dy1 = dy_[i+1];
|
|
|
|
Real dy = 6*t*(1-t)*(y1 - y0) + (3*t*t - 4*t+1)*dy0 + t*(3*t-2)*dy1;
|
|
return dy*inv_dx_;
|
|
}
|
|
|
|
|
|
Size size() const
|
|
{
|
|
return y_.size();
|
|
}
|
|
|
|
int64_t bytes() const
|
|
{
|
|
return 2*y_.size()*sizeof(Real) + 2*sizeof(y_) + 2*sizeof(Real);
|
|
}
|
|
|
|
std::pair<Real, Real> domain() const
|
|
{
|
|
Real xf = x0_ + (y_.size()-1)/inv_dx_;
|
|
return {x0_, xf};
|
|
}
|
|
|
|
private:
|
|
|
|
RandomAccessContainer y_;
|
|
RandomAccessContainer dy_;
|
|
Real x0_;
|
|
Real inv_dx_;
|
|
};
|
|
|
|
|
|
template<class RandomAccessContainer>
|
|
class cardinal_cubic_hermite_detail_aos {
|
|
public:
|
|
using Point = typename RandomAccessContainer::value_type;
|
|
using Real = typename Point::value_type;
|
|
using Size = typename RandomAccessContainer::size_type;
|
|
|
|
cardinal_cubic_hermite_detail_aos(RandomAccessContainer && dat, Real x0, Real dx)
|
|
: dat_{std::move(dat)}, x0_{x0}, inv_dx_{1/dx}
|
|
{
|
|
if (dat_.size() < 2)
|
|
{
|
|
throw std::domain_error("Must be at least two data points.");
|
|
}
|
|
if (dat_[0].size() != 2)
|
|
{
|
|
throw std::domain_error("Each datum must contain (y, y'), and nothing else.");
|
|
}
|
|
if (dx <= 0)
|
|
{
|
|
throw std::domain_error("dx > 0 is required.");
|
|
}
|
|
|
|
for (auto & d : dat_)
|
|
{
|
|
d[1] *= dx;
|
|
}
|
|
}
|
|
|
|
inline Real operator()(Real x) const
|
|
{
|
|
const Real xf = x0_ + (dat_.size()-1)/inv_dx_;
|
|
if (x < x0_ || x > xf)
|
|
{
|
|
std::ostringstream oss;
|
|
oss.precision(std::numeric_limits<Real>::digits10+3);
|
|
oss << "Requested abscissa x = " << x << ", which is outside of allowed range ["
|
|
<< x0_ << ", " << xf << "]";
|
|
throw std::domain_error(oss.str());
|
|
}
|
|
if (x == xf)
|
|
{
|
|
return dat_.back()[0];
|
|
}
|
|
return this->unchecked_evaluation(x);
|
|
}
|
|
|
|
inline Real unchecked_evaluation(Real x) const
|
|
{
|
|
using std::floor;
|
|
Real s = (x-x0_)*inv_dx_;
|
|
Real ii = floor(s);
|
|
auto i = static_cast<decltype(dat_.size())>(ii);
|
|
|
|
Real t = s - ii;
|
|
// If we had infinite precision, this would never happen.
|
|
// But we don't have infinite precision.
|
|
if (t == 0)
|
|
{
|
|
return dat_[i][0];
|
|
}
|
|
Real y0 = dat_[i][0];
|
|
Real y1 = dat_[i+1][0];
|
|
Real dy0 = dat_[i][1];
|
|
Real dy1 = dat_[i+1][1];
|
|
|
|
Real r = 1-t;
|
|
return r*r*(y0*(1+2*t) + dy0*t)
|
|
+ t*t*(y1*(3-2*t) - dy1*r);
|
|
}
|
|
|
|
inline Real prime(Real x) const
|
|
{
|
|
const Real xf = x0_ + (dat_.size()-1)/inv_dx_;
|
|
if (x < x0_ || x > xf)
|
|
{
|
|
std::ostringstream oss;
|
|
oss.precision(std::numeric_limits<Real>::digits10+3);
|
|
oss << "Requested abscissa x = " << x << ", which is outside of allowed range ["
|
|
<< x0_ << ", " << xf << "]";
|
|
throw std::domain_error(oss.str());
|
|
}
|
|
if (x == xf)
|
|
{
|
|
return dat_.back()[1]*inv_dx_;
|
|
}
|
|
return this->unchecked_prime(x);
|
|
}
|
|
|
|
inline Real unchecked_prime(Real x) const
|
|
{
|
|
using std::floor;
|
|
Real s = (x-x0_)*inv_dx_;
|
|
Real ii = floor(s);
|
|
auto i = static_cast<decltype(dat_.size())>(ii);
|
|
Real t = s - ii;
|
|
if (t == 0)
|
|
{
|
|
return dat_[i][1]*inv_dx_;
|
|
}
|
|
Real y0 = dat_[i][0];
|
|
Real dy0 = dat_[i][1];
|
|
Real y1 = dat_[i+1][0];
|
|
Real dy1 = dat_[i+1][1];
|
|
|
|
Real dy = 6*t*(1-t)*(y1 - y0) + (3*t*t - 4*t+1)*dy0 + t*(3*t-2)*dy1;
|
|
return dy*inv_dx_;
|
|
}
|
|
|
|
|
|
Size size() const
|
|
{
|
|
return dat_.size();
|
|
}
|
|
|
|
int64_t bytes() const
|
|
{
|
|
return dat_.size()*dat_[0].size()*sizeof(Real) + sizeof(dat_) + 2*sizeof(Real);
|
|
}
|
|
|
|
std::pair<Real, Real> domain() const
|
|
{
|
|
Real xf = x0_ + (dat_.size()-1)/inv_dx_;
|
|
return {x0_, xf};
|
|
}
|
|
|
|
|
|
private:
|
|
RandomAccessContainer dat_;
|
|
Real x0_;
|
|
Real inv_dx_;
|
|
};
|
|
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|