gnss-sim/3rdparty/boost/geometry/strategies/transform/map_transformer.hpp

175 lines
5.6 KiB
C++

// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands.
// Copyright (c) 2008-2012 Bruno Lalande, Paris, France.
// Copyright (c) 2009-2012 Mateusz Loskot, London, UK.
// Parts of Boost.Geometry are redesigned from Geodan's Geographic Library
// (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_STRATEGIES_TRANSFORM_MAP_TRANSFORMER_HPP
#define BOOST_GEOMETRY_STRATEGIES_TRANSFORM_MAP_TRANSFORMER_HPP
#include <cstddef>
#include <boost/geometry/strategies/transform/matrix_transformers.hpp>
#include <boost/geometry/util/numeric_cast.hpp>
namespace boost { namespace geometry
{
// Silence warning C4127: conditional expression is constant
#if defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable : 4127)
#endif
namespace strategy { namespace transform
{
/*!
\brief Transformation strategy to map from one to another Cartesian coordinate system
\ingroup strategies
\tparam Mirror if true map is mirrored upside-down (in most cases pixels
are from top to bottom, while map is from bottom to top)
*/
template
<
typename CalculationType,
std::size_t Dimension1,
std::size_t Dimension2,
bool Mirror = false,
bool SameScale = true
>
class map_transformer
: public matrix_transformer<CalculationType, Dimension1, Dimension2>
{
typedef boost::qvm::mat<CalculationType, Dimension1 + 1, Dimension2 + 1> M;
typedef boost::qvm::mat<CalculationType, 3, 3> matrix33;
public :
template <typename B, typename D>
explicit inline map_transformer(B const& box, D const& width, D const& height)
{
set_transformation(
get<min_corner, 0>(box), get<min_corner, 1>(box),
get<max_corner, 0>(box), get<max_corner, 1>(box),
width, height);
}
template <typename W, typename D>
explicit inline map_transformer(W const& wx1, W const& wy1, W const& wx2, W const& wy2,
D const& width, D const& height)
{
set_transformation(wx1, wy1, wx2, wy2, width, height);
}
private :
template <typename W, typename P, typename S>
inline void set_transformation_point(W const& wx, W const& wy,
P const& px, P const& py,
S const& scalex, S const& scaley)
{
// Translate to a coordinate system centered on world coordinates (-wx, -wy)
matrix33 t1;
qvm::A<0,0>(t1) = 1; qvm::A<0,1>(t1) = 0; qvm::A<0,2>(t1) = -wx;
qvm::A<1,0>(t1) = 0; qvm::A<1,1>(t1) = 1; qvm::A<1,2>(t1) = -wy;
qvm::A<2,0>(t1) = 0; qvm::A<2,1>(t1) = 0; qvm::A<2,2>(t1) = 1;
// Scale the map
matrix33 s;
qvm::A<0,0>(s) = scalex; qvm::A<0,1>(s) = 0; qvm::A<0,2>(s) = 0;
qvm::A<1,0>(s) = 0; qvm::A<1,1>(s) = scaley; qvm::A<1,2>(s) = 0;
qvm::A<2,0>(s) = 0; qvm::A<2,1>(s) = 0; qvm::A<2,2>(s) = 1;
// Translate to a coordinate system centered on the specified pixels (+px, +py)
matrix33 t2;
qvm::A<0,0>(t2) = 1; qvm::A<0,1>(t2) = 0; qvm::A<0,2>(t2) = px;
qvm::A<1,0>(t2) = 0; qvm::A<1,1>(t2) = 1; qvm::A<1,2>(t2) = py;
qvm::A<2,0>(t2) = 0; qvm::A<2,1>(t2) = 0; qvm::A<2,2>(t2) = 1;
// Calculate combination matrix in two steps
this->m_matrix = s * t1;
this->m_matrix = t2 * this->m_matrix;
}
template <typename W, typename D>
void set_transformation(W const& wx1, W const& wy1, W const& wx2, W const& wy2,
D const& width, D const& height)
{
D px1 = 0;
D py1 = 0;
D px2 = width;
D py2 = height;
// Get the same type, but at least a double
typedef typename select_most_precise<D, double>::type type;
// Calculate appropriate scale, take min because whole box must fit
// Scale is in PIXELS/MAPUNITS (meters)
W wdx = wx2 - wx1;
W wdy = wy2 - wy1;
type sx = (px2 - px1) / util::numeric_cast<type>(wdx);
type sy = (py2 - py1) / util::numeric_cast<type>(wdy);
if (SameScale)
{
type scale = (std::min)(sx, sy);
sx = scale;
sy = scale;
}
// Calculate centerpoints
W wtx = wx1 + wx2;
W wty = wy1 + wy2;
W two = 2;
W wmx = wtx / two;
W wmy = wty / two;
type pmx = (px1 + px2) / 2.0;
type pmy = (py1 + py2) / 2.0;
set_transformation_point(wmx, wmy, pmx, pmy, sx, sy);
if (Mirror)
{
// Mirror in y-direction
matrix33 m;
qvm::A<0,0>(m) = 1; qvm::A<0,1>(m) = 0; qvm::A<0,2>(m) = 0;
qvm::A<1,0>(m) = 0; qvm::A<1,1>(m) = -1; qvm::A<1,2>(m) = 0;
qvm::A<2,0>(m) = 0; qvm::A<2,1>(m) = 0; qvm::A<2,2>(m) = 1;
// Translate in y-direction such that it fits again
matrix33 y;
qvm::A<0,0>(y) = 1; qvm::A<0,1>(y) = 0; qvm::A<0,2>(y) = 0;
qvm::A<1,0>(y) = 0; qvm::A<1,1>(y) = 1; qvm::A<1,2>(y) = height;
qvm::A<2,0>(y) = 0; qvm::A<2,1>(y) = 0; qvm::A<2,2>(y) = 1;
// Calculate combination matrix in two steps
this->m_matrix = m * this->m_matrix;
this->m_matrix = y * this->m_matrix;
}
}
};
}} // namespace strategy::transform
#if defined(_MSC_VER)
#pragma warning(pop)
#endif
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_STRATEGIES_TRANSFORM_MAP_TRANSFORMER_HPP