gnss-sim/3rdparty/boost/geometry/strategies/geographic/buffer_end_round.hpp

154 lines
5.5 KiB
C++

// Boost.Geometry
// Copyright (c) 2022 Barend Gehrels, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_STRATEGIES_GEOGRAPHIC_BUFFER_END_ROUND_HPP
#define BOOST_GEOMETRY_STRATEGIES_GEOGRAPHIC_BUFFER_END_ROUND_HPP
#include <boost/range/value_type.hpp>
#include <boost/geometry/core/radian_access.hpp>
#include <boost/geometry/srs/spheroid.hpp>
#include <boost/geometry/strategies/buffer.hpp>
#include <boost/geometry/strategies/geographic/buffer_helper.hpp>
#include <boost/geometry/strategies/geographic/parameters.hpp>
#include <boost/geometry/util/math.hpp>
#include <boost/geometry/util/select_calculation_type.hpp>
namespace boost { namespace geometry
{
namespace strategy { namespace buffer
{
template
<
typename FormulaPolicy = strategy::andoyer,
typename Spheroid = srs::spheroid<double>,
typename CalculationType = void
>
class geographic_end_round
{
public :
//! \brief Constructs the strategy with a spheroid
//! \param spheroid The spheroid to be used
//! \param points_per_circle Number of points (minimum 4) that would be used for a full circle
explicit inline geographic_end_round(Spheroid const& spheroid,
std::size_t points_per_circle = default_points_per_circle)
: m_spheroid(spheroid)
, m_points_per_circle(get_point_count_for_end(points_per_circle))
{}
//! \brief Constructs the strategy
//! \param points_per_circle Number of points (minimum 4) that would be used for a full circle
explicit inline geographic_end_round(std::size_t points_per_circle = default_points_per_circle)
: m_points_per_circle(get_point_count_for_end(points_per_circle))
{}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template <typename T, typename RangeOut>
inline void generate(T lon_rad, T lat_rad, T distance, T azimuth, RangeOut& range_out) const
{
using helper = geographic_buffer_helper<FormulaPolicy, T>;
std::size_t const n = m_points_per_circle / 2;
T const angle_diff = geometry::math::pi<T>() / n;
T azi = math::wrap_azimuth_in_radian(azimuth + angle_diff);
// Generate points between 0 and n, not including them
// because left and right are inserted before and after this range.
for (std::size_t i = 1; i < n; i++)
{
helper::append_point(lon_rad, lat_rad, distance, azi, m_spheroid, range_out);
azi = math::wrap_azimuth_in_radian(azi + angle_diff);
}
}
//! Fills output_range with a round end
template <typename Point, typename DistanceStrategy, typename RangeOut>
inline void apply(Point const& penultimate_point, Point const& perp_left_point,
Point const& ultimate_point, Point const& perp_right_point,
buffer_side_selector side, DistanceStrategy const& distance,
RangeOut& range_out) const
{
using calc_t = typename select_calculation_type
<
Point,
typename boost::range_value<RangeOut>::type,
CalculationType
>::type;
using helper = geographic_buffer_helper<FormulaPolicy, calc_t>;
calc_t const lon_rad = get_as_radian<0>(ultimate_point);
calc_t const lat_rad = get_as_radian<1>(ultimate_point);
auto const azimuth = helper::azimuth(lon_rad, lat_rad, perp_left_point, m_spheroid);
calc_t const dist_left = distance.apply(penultimate_point, ultimate_point, buffer_side_left);
calc_t const dist_right = distance.apply(penultimate_point, ultimate_point, buffer_side_right);
bool const reversed = (side == buffer_side_left && dist_right < 0 && -dist_right > dist_left)
|| (side == buffer_side_right && dist_left < 0 && -dist_left > dist_right)
;
if (reversed)
{
range_out.push_back(perp_right_point);
// generate
range_out.push_back(perp_left_point);
}
else
{
range_out.push_back(perp_left_point);
if (geometry::math::equals(dist_left, dist_right))
{
generate(lon_rad, lat_rad, dist_left, azimuth, range_out);
}
else
{
static calc_t const two = 2.0;
calc_t const dist_average = (dist_left + dist_right) / two;
calc_t const dist_half
= (side == buffer_side_right
? (dist_right - dist_left)
: (dist_left - dist_right)) / two;
auto const shifted = helper::direct::apply(lon_rad, lat_rad, dist_half, azimuth, m_spheroid);
generate(shifted.lon2, shifted.lat2, dist_average, azimuth, range_out);
}
range_out.push_back(perp_right_point);
}
}
template <typename NumericType>
static inline NumericType max_distance(NumericType const& distance)
{
return distance;
}
//! Returns the piece_type (round end)
static inline piece_type get_piece_type()
{
return buffered_round_end;
}
#endif // DOXYGEN_SHOULD_SKIP_THIS
private :
Spheroid m_spheroid;
std::size_t m_points_per_circle;
};
}} // namespace strategy::buffer
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_STRATEGIES_GEOGRAPHIC_BUFFER_END_ROUND_HPP