316 lines
9.6 KiB
C++
316 lines
9.6 KiB
C++
// Boost.Geometry (aka GGL, Generic Geometry Library)
|
|
|
|
// Copyright (c) 2008-2014 Bruno Lalande, Paris, France.
|
|
// Copyright (c) 2008-2014 Barend Gehrels, Amsterdam, the Netherlands.
|
|
// Copyright (c) 2009-2014 Mateusz Loskot, London, UK.
|
|
|
|
// This file was modified by Oracle on 2014.
|
|
// Modifications copyright (c) 2014, Oracle and/or its affiliates.
|
|
|
|
// Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle
|
|
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
|
|
|
|
// Parts of Boost.Geometry are redesigned from Geodan's Geographic Library
|
|
// (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands.
|
|
|
|
// Use, modification and distribution is subject to the Boost Software License,
|
|
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#ifndef BOOST_GEOMETRY_STRATEGIES_CARTESIAN_DISTANCE_PROJECTED_POINT_AX_HPP
|
|
#define BOOST_GEOMETRY_STRATEGIES_CARTESIAN_DISTANCE_PROJECTED_POINT_AX_HPP
|
|
|
|
|
|
#include <algorithm>
|
|
|
|
#include <boost/concept_check.hpp>
|
|
#include <boost/core/ignore_unused.hpp>
|
|
|
|
#include <boost/geometry/core/access.hpp>
|
|
#include <boost/geometry/core/point_type.hpp>
|
|
|
|
#include <boost/geometry/algorithms/convert.hpp>
|
|
#include <boost/geometry/arithmetic/arithmetic.hpp>
|
|
#include <boost/geometry/arithmetic/dot_product.hpp>
|
|
|
|
#include <boost/geometry/strategies/tags.hpp>
|
|
#include <boost/geometry/strategies/distance.hpp>
|
|
#include <boost/geometry/strategies/default_distance_result.hpp>
|
|
#include <boost/geometry/strategies/cartesian/distance_pythagoras.hpp>
|
|
#include <boost/geometry/strategies/cartesian/distance_projected_point.hpp>
|
|
|
|
#include <boost/geometry/util/select_coordinate_type.hpp>
|
|
|
|
// Helper geometry (projected point on line)
|
|
#include <boost/geometry/geometries/point.hpp>
|
|
|
|
|
|
namespace boost { namespace geometry
|
|
{
|
|
|
|
|
|
namespace strategy { namespace distance
|
|
{
|
|
|
|
|
|
#ifndef DOXYGEN_NO_DETAIL
|
|
namespace detail
|
|
{
|
|
|
|
template <typename T>
|
|
struct projected_point_ax_result
|
|
{
|
|
typedef T value_type;
|
|
|
|
projected_point_ax_result(T const& c = T(0))
|
|
: atd(c), xtd(c)
|
|
{}
|
|
|
|
projected_point_ax_result(T const& a, T const& x)
|
|
: atd(a), xtd(x)
|
|
{}
|
|
|
|
friend inline bool operator<(projected_point_ax_result const& left,
|
|
projected_point_ax_result const& right)
|
|
{
|
|
return left.xtd < right.xtd || left.atd < right.atd;
|
|
}
|
|
|
|
T atd, xtd;
|
|
};
|
|
|
|
// This less-comparator may be used as a parameter of detail::douglas_peucker.
|
|
// In this simplify strategy distances are compared in 2 places
|
|
// 1. to choose the furthest candidate (md < dist)
|
|
// 2. to check if the candidate is further than max_distance (max_distance < md)
|
|
template <typename Distance>
|
|
class projected_point_ax_less
|
|
{
|
|
public:
|
|
projected_point_ax_less(Distance const& max_distance)
|
|
: m_max_distance(max_distance)
|
|
{}
|
|
|
|
inline bool operator()(Distance const& left, Distance const& right) const
|
|
{
|
|
//return left.xtd < right.xtd && right.atd < m_max_distance.atd;
|
|
|
|
typedef typename Distance::value_type value_type;
|
|
|
|
value_type const lx = left.xtd > m_max_distance.xtd ? left.xtd - m_max_distance.xtd : 0;
|
|
value_type const rx = right.xtd > m_max_distance.xtd ? right.xtd - m_max_distance.xtd : 0;
|
|
value_type const la = left.atd > m_max_distance.atd ? left.atd - m_max_distance.atd : 0;
|
|
value_type const ra = right.atd > m_max_distance.atd ? right.atd - m_max_distance.atd : 0;
|
|
|
|
value_type const l = (std::max)(lx, la);
|
|
value_type const r = (std::max)(rx, ra);
|
|
|
|
return l < r;
|
|
}
|
|
private:
|
|
Distance const& m_max_distance;
|
|
};
|
|
|
|
// This strategy returns 2-component Point/Segment distance.
|
|
// The ATD (along track distance) is parallel to the Segment
|
|
// and is a distance between Point projected into a line defined by a Segment and the nearest Segment's endpoint.
|
|
// If the projected Point intersects the Segment the ATD is equal to 0.
|
|
// The XTD (cross track distance) is perpendicular to the Segment
|
|
// and is a distance between input Point and its projection.
|
|
// If the Segment has length equal to 0, ATD and XTD has value equal
|
|
// to the distance between the input Point and one of the Segment's endpoints.
|
|
//
|
|
// p3 p4
|
|
// ^ 7
|
|
// | /
|
|
// p1<-----e========e----->p2
|
|
//
|
|
// p1: atd=D, xtd=0
|
|
// p2: atd=D, xtd=0
|
|
// p3: atd=0, xtd=D
|
|
// p4: atd=D/2, xtd=D
|
|
template
|
|
<
|
|
typename CalculationType = void,
|
|
typename Strategy = pythagoras<CalculationType>
|
|
>
|
|
class projected_point_ax
|
|
{
|
|
public :
|
|
template <typename Point, typename PointOfSegment>
|
|
struct calculation_type
|
|
: public projected_point<CalculationType, Strategy>
|
|
::template calculation_type<Point, PointOfSegment>
|
|
{};
|
|
|
|
template <typename Point, typename PointOfSegment>
|
|
struct result_type
|
|
{
|
|
typedef projected_point_ax_result
|
|
<
|
|
typename calculation_type<Point, PointOfSegment>::type
|
|
> type;
|
|
};
|
|
|
|
public :
|
|
|
|
template <typename Point, typename PointOfSegment>
|
|
inline typename result_type<Point, PointOfSegment>::type
|
|
apply(Point const& p, PointOfSegment const& p1, PointOfSegment const& p2) const
|
|
{
|
|
assert_dimension_equal<Point, PointOfSegment>();
|
|
|
|
typedef typename calculation_type<Point, PointOfSegment>::type calculation_type;
|
|
|
|
// A projected point of points in Integer coordinates must be able to be
|
|
// represented in FP.
|
|
typedef model::point
|
|
<
|
|
calculation_type,
|
|
dimension<PointOfSegment>::value,
|
|
typename coordinate_system<PointOfSegment>::type
|
|
> fp_point_type;
|
|
|
|
// For convenience
|
|
typedef fp_point_type fp_vector_type;
|
|
|
|
/*
|
|
Algorithm [p: (px,py), p1: (x1,y1), p2: (x2,y2)]
|
|
VECTOR v(x2 - x1, y2 - y1)
|
|
VECTOR w(px - x1, py - y1)
|
|
c1 = w . v
|
|
c2 = v . v
|
|
b = c1 / c2
|
|
RETURN POINT(x1 + b * vx, y1 + b * vy)
|
|
*/
|
|
|
|
// v is multiplied below with a (possibly) FP-value, so should be in FP
|
|
// For consistency we define w also in FP
|
|
fp_vector_type v, w, projected;
|
|
|
|
geometry::convert(p2, v);
|
|
geometry::convert(p, w);
|
|
geometry::convert(p1, projected);
|
|
subtract_point(v, projected);
|
|
subtract_point(w, projected);
|
|
|
|
Strategy strategy;
|
|
boost::ignore_unused(strategy);
|
|
|
|
typename result_type<Point, PointOfSegment>::type result;
|
|
|
|
calculation_type const zero = calculation_type();
|
|
calculation_type const c2 = dot_product(v, v);
|
|
if ( math::equals(c2, zero) )
|
|
{
|
|
result.xtd = strategy.apply(p, projected);
|
|
// assume that the 0-length segment is perpendicular to the Pt->ProjPt vector
|
|
result.atd = 0;
|
|
return result;
|
|
}
|
|
|
|
calculation_type const c1 = dot_product(w, v);
|
|
calculation_type const b = c1 / c2;
|
|
multiply_value(v, b);
|
|
add_point(projected, v);
|
|
|
|
result.xtd = strategy.apply(p, projected);
|
|
|
|
if (c1 <= zero)
|
|
{
|
|
result.atd = strategy.apply(p1, projected);
|
|
}
|
|
else if (c2 <= c1)
|
|
{
|
|
result.atd = strategy.apply(p2, projected);
|
|
}
|
|
else
|
|
{
|
|
result.atd = 0;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
};
|
|
|
|
} // namespace detail
|
|
#endif // DOXYGEN_NO_DETAIL
|
|
|
|
#ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
|
|
namespace services
|
|
{
|
|
|
|
|
|
template <typename CalculationType, typename Strategy>
|
|
struct tag<detail::projected_point_ax<CalculationType, Strategy> >
|
|
{
|
|
typedef strategy_tag_distance_point_segment type;
|
|
};
|
|
|
|
|
|
template <typename CalculationType, typename Strategy, typename P, typename PS>
|
|
struct return_type<detail::projected_point_ax<CalculationType, Strategy>, P, PS>
|
|
{
|
|
typedef typename detail::projected_point_ax<CalculationType, Strategy>
|
|
::template result_type<P, PS>::type type;
|
|
};
|
|
|
|
|
|
template <typename CalculationType, typename Strategy>
|
|
struct comparable_type<detail::projected_point_ax<CalculationType, Strategy> >
|
|
{
|
|
// Define a projected_point strategy with its underlying point-point-strategy
|
|
// being comparable
|
|
typedef detail::projected_point_ax
|
|
<
|
|
CalculationType,
|
|
typename comparable_type<Strategy>::type
|
|
> type;
|
|
};
|
|
|
|
|
|
template <typename CalculationType, typename Strategy>
|
|
struct get_comparable<detail::projected_point_ax<CalculationType, Strategy> >
|
|
{
|
|
typedef typename comparable_type
|
|
<
|
|
detail::projected_point_ax<CalculationType, Strategy>
|
|
>::type comparable_type;
|
|
public :
|
|
static inline comparable_type apply(detail::projected_point_ax<CalculationType, Strategy> const& )
|
|
{
|
|
return comparable_type();
|
|
}
|
|
};
|
|
|
|
|
|
template <typename CalculationType, typename Strategy, typename P, typename PS>
|
|
struct result_from_distance<detail::projected_point_ax<CalculationType, Strategy>, P, PS>
|
|
{
|
|
private :
|
|
typedef typename return_type<detail::projected_point_ax<CalculationType, Strategy>, P, PS>::type return_type;
|
|
public :
|
|
template <typename T>
|
|
static inline return_type apply(detail::projected_point_ax<CalculationType, Strategy> const& , T const& value)
|
|
{
|
|
Strategy s;
|
|
return_type ret;
|
|
ret.atd = result_from_distance<Strategy, P, PS>::apply(s, value.atd);
|
|
ret.xtd = result_from_distance<Strategy, P, PS>::apply(s, value.xtd);
|
|
return ret;
|
|
}
|
|
};
|
|
|
|
|
|
} // namespace services
|
|
#endif // DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
|
|
|
|
|
|
}} // namespace strategy::distance
|
|
|
|
|
|
}} // namespace boost::geometry
|
|
|
|
|
|
#endif // BOOST_GEOMETRY_STRATEGIES_CARTESIAN_DISTANCE_PROJECTED_POINT_AX_HPP
|