gnss-sim/3rdparty/boost/geometry/algorithms/discrete_hausdorff_distance...

384 lines
12 KiB
C++

// Boost.Geometry
// Copyright (c) 2018 Yaghyavardhan Singh Khangarot, Hyderabad, India.
// Contributed and/or modified by Yaghyavardhan Singh Khangarot,
// as part of Google Summer of Code 2018 program.
// This file was modified by Oracle on 2018-2021.
// Modifications copyright (c) 2018-2021, Oracle and/or its affiliates.
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_ALGORITHMS_DISCRETE_HAUSDORFF_DISTANCE_HPP
#define BOOST_GEOMETRY_ALGORITHMS_DISCRETE_HAUSDORFF_DISTANCE_HPP
#include <algorithm>
#ifdef BOOST_GEOMETRY_DEBUG_HAUSDORFF_DISTANCE
#include <iostream>
#endif
#include <iterator>
#include <utility>
#include <vector>
#include <limits>
#include <boost/range/size.hpp>
#include <boost/geometry/algorithms/detail/dummy_geometries.hpp>
#include <boost/geometry/algorithms/detail/throw_on_empty_input.hpp>
#include <boost/geometry/algorithms/not_implemented.hpp>
#include <boost/geometry/core/point_type.hpp>
#include <boost/geometry/core/tag.hpp>
#include <boost/geometry/core/tags.hpp>
#include <boost/geometry/strategies/detail.hpp>
#include <boost/geometry/strategies/discrete_distance/cartesian.hpp>
#include <boost/geometry/strategies/discrete_distance/geographic.hpp>
#include <boost/geometry/strategies/discrete_distance/spherical.hpp>
#include <boost/geometry/strategies/distance_result.hpp>
#include <boost/geometry/util/range.hpp>
// Note that in order for this to work umbrella strategy has to contain
// index strategies.
#ifdef BOOST_GEOMETRY_ENABLE_SIMILARITY_RTREE
#include <boost/geometry/index/rtree.hpp>
#endif // BOOST_GEOMETRY_ENABLE_SIMILARITY_RTREE
namespace boost { namespace geometry
{
#ifndef DOXYGEN_NO_DETAIL
namespace detail { namespace discrete_hausdorff_distance
{
// TODO: The implementation should calculate comparable distances
struct point_range
{
template <typename Point, typename Range, typename Strategies>
static inline auto apply(Point const& pnt, Range const& rng,
Strategies const& strategies)
{
typedef typename distance_result
<
Point,
typename point_type<Range>::type,
Strategies
>::type result_type;
typedef typename boost::range_size<Range>::type size_type;
boost::geometry::detail::throw_on_empty_input(rng);
auto const strategy = strategies.distance(dummy_point(), dummy_point());
size_type const n = boost::size(rng);
result_type dis_min = 0;
bool is_dis_min_set = false;
for (size_type i = 0 ; i < n ; i++)
{
result_type dis_temp = strategy.apply(pnt, range::at(rng, i));
if (! is_dis_min_set || dis_temp < dis_min)
{
dis_min = dis_temp;
is_dis_min_set = true;
}
}
return dis_min;
}
};
struct range_range
{
template <typename Range1, typename Range2, typename Strategies>
static inline auto apply(Range1 const& r1, Range2 const& r2,
Strategies const& strategies)
{
typedef typename distance_result
<
typename point_type<Range1>::type,
typename point_type<Range2>::type,
Strategies
>::type result_type;
typedef typename boost::range_size<Range1>::type size_type;
boost::geometry::detail::throw_on_empty_input(r1);
boost::geometry::detail::throw_on_empty_input(r2);
size_type const n = boost::size(r1);
result_type dis_max = 0;
#ifdef BOOST_GEOMETRY_ENABLE_SIMILARITY_RTREE
namespace bgi = boost::geometry::index;
typedef typename point_type<Range1>::type point_t;
typedef bgi::rtree<point_t, bgi::linear<4> > rtree_type;
rtree_type rtree(boost::begin(r2), boost::end(r2));
point_t res;
#endif
for (size_type i = 0 ; i < n ; i++)
{
#ifdef BOOST_GEOMETRY_ENABLE_SIMILARITY_RTREE
size_type found = rtree.query(bgi::nearest(range::at(r1, i), 1), &res);
result_type dis_min = strategy.apply(range::at(r1,i), res);
#else
result_type dis_min = point_range::apply(range::at(r1, i), r2, strategies);
#endif
if (dis_min > dis_max )
{
dis_max = dis_min;
}
}
return dis_max;
}
};
struct range_multi_range
{
template <typename Range, typename Multi_range, typename Strategies>
static inline auto apply(Range const& rng, Multi_range const& mrng,
Strategies const& strategies)
{
typedef typename distance_result
<
typename point_type<Range>::type,
typename point_type<Multi_range>::type,
Strategies
>::type result_type;
typedef typename boost::range_size<Multi_range>::type size_type;
boost::geometry::detail::throw_on_empty_input(rng);
boost::geometry::detail::throw_on_empty_input(mrng);
size_type b = boost::size(mrng);
result_type haus_dis = 0;
for (size_type j = 0 ; j < b ; j++)
{
result_type dis_max = range_range::apply(rng, range::at(mrng, j), strategies);
if (dis_max > haus_dis)
{
haus_dis = dis_max;
}
}
return haus_dis;
}
};
struct multi_range_multi_range
{
template <typename Multi_Range1, typename Multi_range2, typename Strategies>
static inline auto apply(Multi_Range1 const& mrng1, Multi_range2 const& mrng2,
Strategies const& strategies)
{
typedef typename distance_result
<
typename point_type<Multi_Range1>::type,
typename point_type<Multi_range2>::type,
Strategies
>::type result_type;
typedef typename boost::range_size<Multi_Range1>::type size_type;
boost::geometry::detail::throw_on_empty_input(mrng1);
boost::geometry::detail::throw_on_empty_input(mrng2);
size_type n = boost::size(mrng1);
result_type haus_dis = 0;
for (size_type i = 0 ; i < n ; i++)
{
result_type dis_max = range_multi_range::apply(range::at(mrng1, i), mrng2, strategies);
if (dis_max > haus_dis)
{
haus_dis = dis_max;
}
}
return haus_dis;
}
};
}} // namespace detail::hausdorff_distance
#endif // DOXYGEN_NO_DETAIL
#ifndef DOXYGEN_NO_DISPATCH
namespace dispatch
{
template
<
typename Geometry1,
typename Geometry2,
typename Tag1 = typename tag<Geometry1>::type,
typename Tag2 = typename tag<Geometry2>::type
>
struct discrete_hausdorff_distance : not_implemented<Tag1, Tag2>
{};
// Specialization for point and multi_point
template <typename Point, typename MultiPoint>
struct discrete_hausdorff_distance<Point, MultiPoint, point_tag, multi_point_tag>
: detail::discrete_hausdorff_distance::point_range
{};
// Specialization for linestrings
template <typename Linestring1, typename Linestring2>
struct discrete_hausdorff_distance<Linestring1, Linestring2, linestring_tag, linestring_tag>
: detail::discrete_hausdorff_distance::range_range
{};
// Specialization for multi_point-multi_point
template <typename MultiPoint1, typename MultiPoint2>
struct discrete_hausdorff_distance<MultiPoint1, MultiPoint2, multi_point_tag, multi_point_tag>
: detail::discrete_hausdorff_distance::range_range
{};
// Specialization for Linestring and MultiLinestring
template <typename Linestring, typename MultiLinestring>
struct discrete_hausdorff_distance<Linestring, MultiLinestring, linestring_tag, multi_linestring_tag>
: detail::discrete_hausdorff_distance::range_multi_range
{};
// Specialization for MultiLinestring and MultiLinestring
template <typename MultiLinestring1, typename MultiLinestring2>
struct discrete_hausdorff_distance<MultiLinestring1, MultiLinestring2, multi_linestring_tag, multi_linestring_tag>
: detail::discrete_hausdorff_distance::multi_range_multi_range
{};
} // namespace dispatch
#endif // DOXYGEN_NO_DISPATCH
namespace resolve_strategy {
template
<
typename Strategies,
bool IsUmbrella = strategies::detail::is_umbrella_strategy<Strategies>::value
>
struct discrete_hausdorff_distance
{
template <typename Geometry1, typename Geometry2>
static inline auto apply(Geometry1 const& geometry1, Geometry2 const& geometry2,
Strategies const& strategies)
{
return dispatch::discrete_hausdorff_distance
<
Geometry1, Geometry2
>::apply(geometry1, geometry2, strategies);
}
};
template <typename Strategy>
struct discrete_hausdorff_distance<Strategy, false>
{
template <typename Geometry1, typename Geometry2>
static inline auto apply(Geometry1 const& geometry1, Geometry2 const& geometry2,
Strategy const& strategy)
{
using strategies::discrete_distance::services::strategy_converter;
return dispatch::discrete_hausdorff_distance
<
Geometry1, Geometry2
>::apply(geometry1, geometry2,
strategy_converter<Strategy>::get(strategy));
}
};
template <>
struct discrete_hausdorff_distance<default_strategy, false>
{
template <typename Geometry1, typename Geometry2>
static inline auto apply(Geometry1 const& geometry1, Geometry2 const& geometry2,
default_strategy const&)
{
typedef typename strategies::discrete_distance::services::default_strategy
<
Geometry1, Geometry2
>::type strategies_type;
return dispatch::discrete_hausdorff_distance
<
Geometry1, Geometry2
>::apply(geometry1, geometry2, strategies_type());
}
};
} // namespace resolve_strategy
/*!
\brief Calculate discrete Hausdorff distance between two geometries (currently
works for LineString-LineString, MultiPoint-MultiPoint, Point-MultiPoint,
MultiLineString-MultiLineString) using specified strategy.
\ingroup discrete_hausdorff_distance
\tparam Geometry1 \tparam_geometry
\tparam Geometry2 \tparam_geometry
\tparam Strategy A type fulfilling a DistanceStrategy concept
\param geometry1 Input geometry
\param geometry2 Input geometry
\param strategy Distance strategy to be used to calculate Pt-Pt distance
\qbk{distinguish,with strategy}
\qbk{[include reference/algorithms/discrete_hausdorff_distance.qbk]}
\qbk{
[heading Available Strategies]
\* [link geometry.reference.strategies.strategy_distance_pythagoras Pythagoras (cartesian)]
\* [link geometry.reference.strategies.strategy_distance_haversine Haversine (spherical)]
[/ \* more (currently extensions): Vincenty\, Andoyer (geographic) ]
[heading Example]
[discrete_hausdorff_distance_strategy]
[discrete_hausdorff_distance_strategy_output]
}
*/
template <typename Geometry1, typename Geometry2, typename Strategy>
inline auto discrete_hausdorff_distance(Geometry1 const& geometry1,
Geometry2 const& geometry2,
Strategy const& strategy)
{
return resolve_strategy::discrete_hausdorff_distance
<
Strategy
>::apply(geometry1, geometry2, strategy);
}
/*!
\brief Calculate discrete Hausdorff distance between two geometries (currently
works for LineString-LineString, MultiPoint-MultiPoint, Point-MultiPoint,
MultiLineString-MultiLineString).
\ingroup discrete_hausdorff_distance
\tparam Geometry1 \tparam_geometry
\tparam Geometry2 \tparam_geometry
\param geometry1 Input geometry
\param geometry2 Input geometry
\qbk{[include reference/algorithms/discrete_hausdorff_distance.qbk]}
\qbk{
[heading Example]
[discrete_hausdorff_distance]
[discrete_hausdorff_distance_output]
}
*/
template <typename Geometry1, typename Geometry2>
inline auto discrete_hausdorff_distance(Geometry1 const& geometry1,
Geometry2 const& geometry2)
{
return resolve_strategy::discrete_hausdorff_distance
<
default_strategy
>::apply(geometry1, geometry2, default_strategy());
}
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_ALGORITHMS_DISCRETE_HAUSDORFF_DISTANCE_HPP