gnss-sim/3rdparty/boost/geometry/algorithms/detail/within/multi_point.hpp

283 lines
9.3 KiB
C++

// Boost.Geometry
// Copyright (c) 2023 Adam Wulkiewicz, Lodz, Poland.
// Copyright (c) 2017-2023, Oracle and/or its affiliates.
// Contributed and/or modified by Vissarion Fysikopoulos, on behalf of Oracle
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_WITHIN_MULTI_POINT_HPP
#define BOOST_GEOMETRY_ALGORITHMS_DETAIL_WITHIN_MULTI_POINT_HPP
#include <algorithm>
#include <vector>
#include <boost/range/begin.hpp>
#include <boost/range/end.hpp>
#include <boost/range/size.hpp>
#include <boost/range/value_type.hpp>
#include <boost/geometry/algorithms/detail/disjoint/box_box.hpp>
#include <boost/geometry/algorithms/detail/disjoint/point_box.hpp>
#include <boost/geometry/algorithms/detail/expand_by_epsilon.hpp>
#include <boost/geometry/algorithms/detail/within/point_in_geometry.hpp>
#include <boost/geometry/algorithms/envelope.hpp>
#include <boost/geometry/algorithms/detail/partition.hpp>
#include <boost/geometry/core/tag.hpp>
#include <boost/geometry/core/tag_cast.hpp>
#include <boost/geometry/core/tags.hpp>
#include <boost/geometry/geometries/box.hpp>
#include <boost/geometry/index/rtree.hpp>
#include <boost/geometry/policies/compare.hpp>
#include <boost/geometry/strategies/covered_by.hpp>
#include <boost/geometry/strategies/disjoint.hpp>
#include <boost/geometry/util/constexpr.hpp>
#include <boost/geometry/util/type_traits.hpp>
namespace boost { namespace geometry {
#ifndef DOXYGEN_NO_DETAIL
namespace detail { namespace within {
struct multi_point_point
{
template <typename MultiPoint, typename Point, typename Strategy>
static inline bool apply(MultiPoint const& multi_point,
Point const& point,
Strategy const& strategy)
{
auto const s = strategy.relate(multi_point, point);
for (auto it = boost::begin(multi_point); it != boost::end(multi_point); ++it)
{
if (! s.apply(*it, point))
{
return false;
}
}
// all points of MultiPoint inside Point
return true;
}
};
// NOTE: currently the strategy is ignored, math::equals() is used inside geometry::less<>
struct multi_point_multi_point
{
template <typename MultiPoint1, typename MultiPoint2, typename Strategy>
static inline bool apply(MultiPoint1 const& multi_point1,
MultiPoint2 const& multi_point2,
Strategy const& /*strategy*/)
{
typedef typename boost::range_value<MultiPoint2>::type point2_type;
typedef geometry::less<void, -1, Strategy> less_type;
less_type const less = less_type();
std::vector<point2_type> points2(boost::begin(multi_point2), boost::end(multi_point2));
std::sort(points2.begin(), points2.end(), less);
bool result = false;
for (auto it = boost::begin(multi_point1); it != boost::end(multi_point1); ++it)
{
if (! std::binary_search(points2.begin(), points2.end(), *it, less))
{
return false;
}
else
{
result = true;
}
}
return result;
}
};
// TODO: the complexity could be lesser
// the second geometry could be "prepared"/sorted
// For Linear geometries partition could be used
// For Areal geometries point_in_geometry() would have to call the winding
// strategy differently, currently it linearly calls the strategy for each
// segment. So the segments would have to be sorted in a way consistent with
// the strategy and then the strategy called only for the segments in range.
template <bool Within>
struct multi_point_single_geometry
{
template <typename MultiPoint, typename LinearOrAreal, typename Strategy>
static inline bool apply(MultiPoint const& multi_point,
LinearOrAreal const& linear_or_areal,
Strategy const& strategy)
{
//typedef typename boost::range_value<MultiPoint>::type point1_type;
typedef typename point_type<LinearOrAreal>::type point2_type;
typedef model::box<point2_type> box2_type;
// Create envelope of geometry
box2_type box;
geometry::envelope(linear_or_areal, box, strategy);
geometry::detail::expand_by_epsilon(box);
// Test each Point with envelope and then geometry if needed
// If in the exterior, break
bool result = false;
for (auto it = boost::begin(multi_point); it != boost::end(multi_point); ++it )
{
typedef decltype(strategy.covered_by(*it, box)) point_in_box_type;
int in_val = 0;
// exterior of box and of geometry
if (! point_in_box_type::apply(*it, box)
|| (in_val = point_in_geometry(*it, linear_or_areal, strategy)) < 0)
{
result = false;
break;
}
// interior : interior/boundary
if (Within ? in_val > 0 : in_val >= 0)
{
result = true;
}
}
return result;
}
};
// TODO: same here, probably the complexity could be lesser
template <bool Within>
struct multi_point_multi_geometry
{
template <typename MultiPoint, typename LinearOrAreal, typename Strategy>
static inline bool apply(MultiPoint const& multi_point,
LinearOrAreal const& linear_or_areal,
Strategy const& strategy)
{
typedef typename point_type<LinearOrAreal>::type point2_type;
typedef model::box<point2_type> box2_type;
static const bool is_linear = util::is_linear<LinearOrAreal>::value;
// TODO: box pairs could be constructed on the fly, inside the rtree
// Prepare range of envelopes and ids
std::size_t count2 = boost::size(linear_or_areal);
typedef std::pair<box2_type, std::size_t> box_pair_type;
typedef std::vector<box_pair_type> box_pair_vector;
box_pair_vector boxes(count2);
for (std::size_t i = 0 ; i < count2 ; ++i)
{
geometry::envelope(linear_or_areal, boxes[i].first, strategy);
geometry::detail::expand_by_epsilon(boxes[i].first);
boxes[i].second = i;
}
// Create R-tree
typedef index::parameters<index::rstar<4>, Strategy> index_parameters_type;
index::rtree<box_pair_type, index_parameters_type>
rtree(boxes.begin(), boxes.end(),
index_parameters_type(index::rstar<4>(), strategy));
// For each point find overlapping envelopes and test corresponding single geometries
// If a point is in the exterior break
bool result = false;
for (auto it = boost::begin(multi_point); it != boost::end(multi_point); ++it)
{
// TODO: investigate the possibility of using satisfies
// TODO: investigate the possibility of using iterative queries (optimization below)
box_pair_vector inters_boxes;
rtree.query(index::intersects(*it), std::back_inserter(inters_boxes));
bool found_interior = false;
bool found_boundary = false;
int boundaries = 0;
typedef typename box_pair_vector::const_iterator box_iterator;
for (box_iterator box_it = inters_boxes.begin() ;
box_it != inters_boxes.end() ; ++box_it )
{
int const in_val = point_in_geometry(*it,
range::at(linear_or_areal, box_it->second), strategy);
if (in_val > 0)
{
found_interior = true;
}
else if (in_val == 0)
{
++boundaries;
}
// If the result was set previously (interior or
// interior/boundary found) the only thing that needs to be
// done for other points is to make sure they're not
// overlapping the exterior no need to analyse boundaries.
if (result && in_val >= 0)
{
break;
}
}
if (boundaries > 0)
{
if BOOST_GEOMETRY_CONSTEXPR (is_linear)
{
if (boundaries % 2 == 0)
{
found_interior = true;
}
else
{
found_boundary = true;
}
}
else
{
found_boundary = true;
}
}
// exterior
if (! found_interior && ! found_boundary)
{
result = false;
break;
}
// interior : interior/boundary
if (Within ? found_interior : (found_interior || found_boundary))
{
result = true;
}
}
return result;
}
};
}} // namespace detail::within
#endif // DOXYGEN_NO_DETAIL
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_WITHIN_MULTI_POINT_HPP