gnss-sim/3rdparty/boost/geometry/algorithms/detail/overlay/get_clusters.hpp

225 lines
6.6 KiB
C++

// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2021 Barend Gehrels, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_OVERLAY_GET_CLUSTERS_HPP
#define BOOST_GEOMETRY_ALGORITHMS_DETAIL_OVERLAY_GET_CLUSTERS_HPP
#include <algorithm>
#include <map>
#include <vector>
#include <boost/geometry/core/access.hpp>
#include <boost/geometry/algorithms/detail/overlay/approximately_equals.hpp>
#include <boost/geometry/algorithms/detail/overlay/cluster_info.hpp>
#include <boost/geometry/algorithms/detail/overlay/get_ring.hpp>
#include <boost/geometry/algorithms/detail/recalculate.hpp>
#include <boost/geometry/policies/robustness/rescale_policy_tags.hpp>
#include <boost/range/value_type.hpp>
#include <boost/geometry/util/math.hpp>
#define BOOST_GEOMETRY_USE_RESCALING_IN_GET_CLUSTERS
namespace boost { namespace geometry
{
#ifndef DOXYGEN_NO_DETAIL
namespace detail { namespace overlay
{
template <typename Tag = no_rescale_policy_tag, bool Integral = false>
struct sweep_equal_policy
{
public:
// Returns true if point are considered equal
template <typename P>
static inline bool equals(P const& p1, P const& p2)
{
using coor_t = typename coordinate_type<P>::type;
static auto const tolerance
= common_approximately_equals_epsilon_multiplier<coor_t>::value();
return approximately_equals(p1, p2, tolerance);
}
template <typename T>
static inline bool exceeds(T value)
{
static auto const tolerance
= common_approximately_equals_epsilon_multiplier<T>::value();
T const limit = T(1) / tolerance;
return value > limit;
}
};
template <>
struct sweep_equal_policy<no_rescale_policy_tag, true>
{
template <typename P>
static inline bool equals(P const& p1, P const& p2)
{
return geometry::get<0>(p1) == geometry::get<0>(p2)
&& geometry::get<1>(p1) == geometry::get<1>(p2);
}
template <typename T>
static inline bool exceeds(T value)
{
return value > 0;
}
};
#ifdef BOOST_GEOMETRY_USE_RESCALING_IN_GET_CLUSTERS
template <>
struct sweep_equal_policy<rescale_policy_tag, true>
{
template <typename P>
static inline bool equals(P const& p1, P const& p2)
{
// Neighbouring cells in the "integer grid" are considered as equal
return math::abs(geometry::get<0>(p1) - geometry::get<0>(p2)) <= 1
&& math::abs(geometry::get<1>(p1) - geometry::get<1>(p2)) <= 1;
}
template <typename T>
static inline bool exceeds(T value)
{
return value > 1;
}
};
#endif
template <typename Point>
struct turn_with_point
{
std::size_t turn_index;
Point pnt;
};
template <typename Cluster, typename Point>
struct cluster_with_point
{
Cluster cluster;
Point pnt;
};
// Use a sweep algorithm to detect clusters
template
<
typename Turns,
typename Clusters,
typename RobustPolicy
>
inline void get_clusters(Turns& turns, Clusters& clusters,
RobustPolicy const& robust_policy)
{
using turn_type = typename boost::range_value<Turns>::type;
using cluster_type = typename Clusters::mapped_type;
#ifdef BOOST_GEOMETRY_USE_RESCALING_IN_GET_CLUSTERS
// For now still use robust points for rescaled, otherwise points do not match
using point_type = typename geometry::robust_point_type
<
typename turn_type::point_type,
RobustPolicy
>::type;
#else
using point_type = typename turn_type::point_type;
#endif
sweep_equal_policy
<
typename rescale_policy_type<RobustPolicy>::type,
std::is_integral<typename coordinate_type<point_type>::type>::value
> equal_policy;
std::vector<turn_with_point<point_type>> points;
std::size_t turn_index = 0;
for (auto const& turn : turns)
{
if (! turn.discarded)
{
#ifdef BOOST_GEOMETRY_USE_RESCALING_IN_GET_CLUSTERS
point_type pnt;
geometry::recalculate(pnt, turn.point, robust_policy);
points.push_back({turn_index, pnt});
#else
points.push_back({turn_index, turn.point});
#endif
}
turn_index++;
}
// Sort the points from top to bottom
std::sort(points.begin(), points.end(), [](auto const& e1, auto const& e2)
{
return geometry::get<1>(e1.pnt) > geometry::get<1>(e2.pnt);
});
// The output vector will be sorted from bottom too
std::vector<cluster_with_point<cluster_type, point_type>> clustered_points;
// Compare points with each other. Performance is O(n log(n)) because of the sorting.
for (auto it1 = points.begin(); it1 != points.end(); ++it1)
{
// Inner loop, iterates until it exceeds coordinates in y-direction
for (auto it2 = it1 + 1; it2 != points.end(); ++it2)
{
auto const d = geometry::get<1>(it1->pnt) - geometry::get<1>(it2->pnt);
if (equal_policy.exceeds(d))
{
// Points at this y-coordinate or below cannot be equal
break;
}
if (equal_policy.equals(it1->pnt, it2->pnt))
{
std::size_t cindex = 0;
// Most recent clusters (with this y-value) are at the bottom
// therefore we can stop as soon as the y-value is out of reach (TODO)
bool found = false;
for (auto cit = clustered_points.begin();
cit != clustered_points.end(); ++cit)
{
found = equal_policy.equals(cit->pnt, it1->pnt);
if (found)
{
break;
}
cindex++;
}
// Add new cluster
if (! found)
{
cindex = clustered_points.size();
cluster_type newcluster;
clustered_points.push_back({newcluster, it1->pnt});
}
clustered_points[cindex].cluster.turn_indices.insert(it1->turn_index);
clustered_points[cindex].cluster.turn_indices.insert(it2->turn_index);
}
}
}
// Convert to map
signed_size_type cluster_id = 1;
for (auto& trace : clustered_points)
{
clusters[cluster_id++] = trace.cluster;
}
}
}} // namespace detail::overlay
#endif //DOXYGEN_NO_DETAIL
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_OVERLAY_GET_CLUSTERS_HPP