939 lines
38 KiB
C++
939 lines
38 KiB
C++
// Copyright (C) 2004-2006 The Trustees of Indiana University.
|
|
|
|
// Use, modification and distribution is subject to the Boost Software
|
|
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
// Authors: Douglas Gregor
|
|
// Andrew Lumsdaine
|
|
|
|
/**
|
|
* This header implements four distributed algorithms to compute
|
|
* the minimum spanning tree (actually, minimum spanning forest) of a
|
|
* graph. All of the algorithms were implemented as specified in the
|
|
* paper by Dehne and Gotz:
|
|
*
|
|
* Frank Dehne and Silvia Gotz. Practical Parallel Algorithms for Minimum
|
|
* Spanning Trees. In Symposium on Reliable Distributed Systems,
|
|
* pages 366--371, 1998.
|
|
*
|
|
* There are four algorithm variants implemented.
|
|
*/
|
|
|
|
#ifndef BOOST_DEHNE_GOTZ_MIN_SPANNING_TREE_HPP
|
|
#define BOOST_DEHNE_GOTZ_MIN_SPANNING_TREE_HPP
|
|
|
|
#ifndef BOOST_GRAPH_USE_MPI
|
|
#error "Parallel BGL files should not be included unless <boost/graph/use_mpi.hpp> has been included"
|
|
#endif
|
|
|
|
#include <boost/graph/graph_traits.hpp>
|
|
#include <boost/property_map/property_map.hpp>
|
|
#include <boost/property_map/parallel/parallel_property_maps.hpp>
|
|
#include <vector>
|
|
#include <boost/graph/parallel/algorithm.hpp>
|
|
#include <boost/limits.hpp>
|
|
#include <utility>
|
|
#include <boost/pending/disjoint_sets.hpp>
|
|
#include <boost/pending/indirect_cmp.hpp>
|
|
#include <boost/property_map/parallel/caching_property_map.hpp>
|
|
#include <boost/graph/vertex_and_edge_range.hpp>
|
|
#include <boost/graph/kruskal_min_spanning_tree.hpp>
|
|
#include <boost/iterator/counting_iterator.hpp>
|
|
#include <boost/iterator/transform_iterator.hpp>
|
|
#include <boost/graph/parallel/container_traits.hpp>
|
|
#include <boost/graph/parallel/detail/untracked_pair.hpp>
|
|
#include <cmath>
|
|
|
|
namespace boost { namespace graph { namespace distributed {
|
|
|
|
namespace detail {
|
|
/**
|
|
* Binary function object type that selects the (edge, weight) pair
|
|
* with the minimum weight. Used within a Boruvka merge step to select
|
|
* the candidate edges incident to each supervertex.
|
|
*/
|
|
struct smaller_weighted_edge
|
|
{
|
|
template<typename Edge, typename Weight>
|
|
std::pair<Edge, Weight>
|
|
operator()(const std::pair<Edge, Weight>& x,
|
|
const std::pair<Edge, Weight>& y) const
|
|
{ return x.second < y.second? x : y; }
|
|
};
|
|
|
|
/**
|
|
* Unary predicate that determines if the source and target vertices
|
|
* of the given edge have the same representative within a disjoint
|
|
* sets data structure. Used to indicate when an edge is now a
|
|
* self-loop because of supervertex merging in Boruvka's algorithm.
|
|
*/
|
|
template<typename DisjointSets, typename Graph>
|
|
class do_has_same_supervertex
|
|
{
|
|
public:
|
|
typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor;
|
|
|
|
do_has_same_supervertex(DisjointSets& dset, const Graph& g)
|
|
: dset(dset), g(g) { }
|
|
|
|
bool operator()(edge_descriptor e)
|
|
{ return dset.find_set(source(e, g)) == dset.find_set(target(e, g)); }
|
|
|
|
private:
|
|
DisjointSets& dset;
|
|
const Graph& g;
|
|
};
|
|
|
|
/**
|
|
* Build a @ref do_has_same_supervertex object.
|
|
*/
|
|
template<typename DisjointSets, typename Graph>
|
|
inline do_has_same_supervertex<DisjointSets, Graph>
|
|
has_same_supervertex(DisjointSets& dset, const Graph& g)
|
|
{ return do_has_same_supervertex<DisjointSets, Graph>(dset, g); }
|
|
|
|
/** \brief A single distributed Boruvka merge step.
|
|
*
|
|
* A distributed Boruvka merge step involves computing (globally)
|
|
* the minimum weight edges incident on each supervertex and then
|
|
* merging supervertices along these edges. Once supervertices are
|
|
* merged, self-loops are eliminated.
|
|
*
|
|
* The set of parameters passed to this algorithm is large, and
|
|
* considering this algorithm in isolation there are several
|
|
* redundancies. However, the more asymptotically efficient
|
|
* distributed MSF algorithms require mixing Boruvka steps with the
|
|
* merging of local MSFs (implemented in
|
|
* merge_local_minimum_spanning_trees_step): the interaction of the
|
|
* two algorithms mandates the addition of these parameters.
|
|
*
|
|
* \param pg The process group over which communication should be
|
|
* performed. Within the distributed Boruvka algorithm, this will be
|
|
* equivalent to \code process_group(g); however, in the context of
|
|
* the mixed MSF algorithms, the process group @p pg will be a
|
|
* (non-strict) process subgroup of \code process_group(g).
|
|
*
|
|
* \param g The underlying graph on which the MSF is being
|
|
* computed. The type of @p g must model DistributedGraph, but there
|
|
* are no other requirements because the edge and (super)vertex
|
|
* lists are passed separately.
|
|
*
|
|
* \param weight_map Property map containing the weights of each
|
|
* edge. The type of this property map must model
|
|
* ReadablePropertyMap and must support caching.
|
|
*
|
|
* \param out An output iterator that will be written with the set
|
|
* of edges selected to build the MSF. Every process within the
|
|
* process group @p pg will receive all edges in the MSF.
|
|
*
|
|
* \param dset Disjoint sets data structure mapping from vertices in
|
|
* the graph @p g to their representative supervertex.
|
|
*
|
|
* \param supervertex_map Mapping from supervertex descriptors to
|
|
* indices.
|
|
*
|
|
* \param supervertices A vector containing all of the
|
|
* supervertices. Will be modified to include only the remaining
|
|
* supervertices after merging occurs.
|
|
*
|
|
* \param edge_list The list of edges that remain in the graph. This
|
|
* list will be pruned to remove self-loops once MSF edges have been
|
|
* found.
|
|
*/
|
|
template<typename ProcessGroup, typename Graph, typename WeightMap,
|
|
typename OutputIterator, typename RankMap, typename ParentMap,
|
|
typename SupervertexMap, typename Vertex, typename EdgeList>
|
|
OutputIterator
|
|
boruvka_merge_step(ProcessGroup pg, const Graph& g, WeightMap weight_map,
|
|
OutputIterator out,
|
|
disjoint_sets<RankMap, ParentMap>& dset,
|
|
SupervertexMap supervertex_map,
|
|
std::vector<Vertex>& supervertices,
|
|
EdgeList& edge_list)
|
|
{
|
|
typedef typename graph_traits<Graph>::vertex_descriptor
|
|
vertex_descriptor;
|
|
typedef typename graph_traits<Graph>::vertices_size_type
|
|
vertices_size_type;
|
|
typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor;
|
|
typedef typename EdgeList::iterator edge_iterator;
|
|
typedef typename property_traits<WeightMap>::value_type
|
|
weight_type;
|
|
typedef boost::parallel::detail::untracked_pair<edge_descriptor,
|
|
weight_type> w_edge;
|
|
typedef typename property_traits<SupervertexMap>::value_type
|
|
supervertex_index;
|
|
|
|
smaller_weighted_edge min_edge;
|
|
weight_type inf = (std::numeric_limits<weight_type>::max)();
|
|
|
|
// Renumber the supervertices
|
|
for (std::size_t i = 0; i < supervertices.size(); ++i)
|
|
put(supervertex_map, supervertices[i], i);
|
|
|
|
// BSP-B1: Find local minimum-weight edges for each supervertex
|
|
std::vector<w_edge> candidate_edges(supervertices.size(),
|
|
w_edge(edge_descriptor(), inf));
|
|
for (edge_iterator ei = edge_list.begin(); ei != edge_list.end(); ++ei) {
|
|
weight_type w = get(weight_map, *ei);
|
|
supervertex_index u =
|
|
get(supervertex_map, dset.find_set(source(*ei, g)));
|
|
supervertex_index v =
|
|
get(supervertex_map, dset.find_set(target(*ei, g)));
|
|
|
|
if (u != v) {
|
|
candidate_edges[u] = min_edge(candidate_edges[u], w_edge(*ei, w));
|
|
candidate_edges[v] = min_edge(candidate_edges[v], w_edge(*ei, w));
|
|
}
|
|
}
|
|
|
|
// BSP-B2 (a): Compute global minimum edges for each supervertex
|
|
all_reduce(pg,
|
|
&candidate_edges[0],
|
|
&candidate_edges[0] + candidate_edges.size(),
|
|
&candidate_edges[0], min_edge);
|
|
|
|
// BSP-B2 (b): Use the edges to compute sequentially the new
|
|
// connected components and emit the edges.
|
|
for (vertices_size_type i = 0; i < candidate_edges.size(); ++i) {
|
|
if (candidate_edges[i].second != inf) {
|
|
edge_descriptor e = candidate_edges[i].first;
|
|
vertex_descriptor u = dset.find_set(source(e, g));
|
|
vertex_descriptor v = dset.find_set(target(e, g));
|
|
if (u != v) {
|
|
// Emit the edge, but cache the weight so everyone knows it
|
|
cache(weight_map, e, candidate_edges[i].second);
|
|
*out++ = e;
|
|
|
|
// Link the two supervertices
|
|
dset.link(u, v);
|
|
|
|
// Whichever vertex was reparented will be removed from the
|
|
// list of supervertices.
|
|
vertex_descriptor victim = u;
|
|
if (dset.find_set(u) == u) victim = v;
|
|
supervertices[get(supervertex_map, victim)] =
|
|
graph_traits<Graph>::null_vertex();
|
|
}
|
|
}
|
|
}
|
|
|
|
// BSP-B3: Eliminate self-loops
|
|
edge_list.erase(std::remove_if(edge_list.begin(), edge_list.end(),
|
|
has_same_supervertex(dset, g)),
|
|
edge_list.end());
|
|
|
|
// TBD: might also eliminate multiple edges between supervertices
|
|
// when the edges do not have the best weight, but this is not
|
|
// strictly necessary.
|
|
|
|
// Eliminate supervertices that have been absorbed
|
|
supervertices.erase(std::remove(supervertices.begin(),
|
|
supervertices.end(),
|
|
graph_traits<Graph>::null_vertex()),
|
|
supervertices.end());
|
|
|
|
return out;
|
|
}
|
|
|
|
/**
|
|
* An edge descriptor adaptor that reroutes the source and target
|
|
* edges to different vertices, but retains the original edge
|
|
* descriptor for, e.g., property maps. This is used when we want to
|
|
* turn a set of edges in the overall graph into a set of edges
|
|
* between supervertices.
|
|
*/
|
|
template<typename Graph>
|
|
struct supervertex_edge_descriptor
|
|
{
|
|
typedef supervertex_edge_descriptor self_type;
|
|
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
|
|
typedef typename graph_traits<Graph>::edge_descriptor Edge;
|
|
|
|
Vertex source;
|
|
Vertex target;
|
|
Edge e;
|
|
|
|
operator Edge() const { return e; }
|
|
|
|
friend inline bool operator==(const self_type& x, const self_type& y)
|
|
{ return x.e == y.e; }
|
|
|
|
friend inline bool operator!=(const self_type& x, const self_type& y)
|
|
{ return x.e != y.e; }
|
|
};
|
|
|
|
template<typename Graph>
|
|
inline typename supervertex_edge_descriptor<Graph>::Vertex
|
|
source(supervertex_edge_descriptor<Graph> se, const Graph&)
|
|
{ return se.source; }
|
|
|
|
template<typename Graph>
|
|
inline typename supervertex_edge_descriptor<Graph>::Vertex
|
|
target(supervertex_edge_descriptor<Graph> se, const Graph&)
|
|
{ return se.target; }
|
|
|
|
/**
|
|
* Build a supervertex edge descriptor from a normal edge descriptor
|
|
* using the given disjoint sets data structure to identify
|
|
* supervertex representatives.
|
|
*/
|
|
template<typename Graph, typename DisjointSets>
|
|
struct build_supervertex_edge_descriptor
|
|
{
|
|
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
|
|
typedef typename graph_traits<Graph>::edge_descriptor Edge;
|
|
|
|
typedef Edge argument_type;
|
|
typedef supervertex_edge_descriptor<Graph> result_type;
|
|
|
|
build_supervertex_edge_descriptor() : g(0), dsets(0) { }
|
|
|
|
build_supervertex_edge_descriptor(const Graph& g, DisjointSets& dsets)
|
|
: g(&g), dsets(&dsets) { }
|
|
|
|
result_type operator()(argument_type e) const
|
|
{
|
|
result_type result;
|
|
result.source = dsets->find_set(source(e, *g));
|
|
result.target = dsets->find_set(target(e, *g));
|
|
result.e = e;
|
|
return result;
|
|
}
|
|
|
|
private:
|
|
const Graph* g;
|
|
DisjointSets* dsets;
|
|
};
|
|
|
|
template<typename Graph, typename DisjointSets>
|
|
inline build_supervertex_edge_descriptor<Graph, DisjointSets>
|
|
make_supervertex_edge_descriptor(const Graph& g, DisjointSets& dsets)
|
|
{ return build_supervertex_edge_descriptor<Graph, DisjointSets>(g, dsets); }
|
|
|
|
template<typename T>
|
|
struct identity_function
|
|
{
|
|
typedef T argument_type;
|
|
typedef T result_type;
|
|
|
|
result_type operator()(argument_type x) const { return x; }
|
|
};
|
|
|
|
template<typename Graph, typename DisjointSets, typename EdgeMapper>
|
|
class is_not_msf_edge
|
|
{
|
|
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
|
|
typedef typename graph_traits<Graph>::edge_descriptor Edge;
|
|
|
|
public:
|
|
is_not_msf_edge(const Graph& g, DisjointSets dset, EdgeMapper edge_mapper)
|
|
: g(g), dset(dset), edge_mapper(edge_mapper) { }
|
|
|
|
bool operator()(Edge e)
|
|
{
|
|
Vertex u = dset.find_set(source(edge_mapper(e), g));
|
|
Vertex v = dset.find_set(target(edge_mapper(e), g));
|
|
if (u == v) return true;
|
|
else {
|
|
dset.link(u, v);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
private:
|
|
const Graph& g;
|
|
DisjointSets dset;
|
|
EdgeMapper edge_mapper;
|
|
};
|
|
|
|
template<typename Graph, typename ForwardIterator, typename EdgeList,
|
|
typename EdgeMapper, typename RankMap, typename ParentMap>
|
|
void
|
|
sorted_mutating_kruskal(const Graph& g,
|
|
ForwardIterator first_vertex,
|
|
ForwardIterator last_vertex,
|
|
EdgeList& edge_list, EdgeMapper edge_mapper,
|
|
RankMap rank_map, ParentMap parent_map)
|
|
{
|
|
typedef disjoint_sets<RankMap, ParentMap> DisjointSets;
|
|
|
|
// Build and initialize disjoint-sets data structure
|
|
DisjointSets dset(rank_map, parent_map);
|
|
for (ForwardIterator v = first_vertex; v != last_vertex; ++v)
|
|
dset.make_set(*v);
|
|
|
|
is_not_msf_edge<Graph, DisjointSets, EdgeMapper>
|
|
remove_non_msf_edges(g, dset, edge_mapper);
|
|
edge_list.erase(std::remove_if(edge_list.begin(), edge_list.end(),
|
|
remove_non_msf_edges),
|
|
edge_list.end());
|
|
}
|
|
|
|
/**
|
|
* Merge local minimum spanning forests from p processes into
|
|
* minimum spanning forests on p/D processes (where D is the tree
|
|
* factor, currently fixed at 3), eliminating unnecessary edges in
|
|
* the process.
|
|
*
|
|
* As with @ref boruvka_merge_step, this routine has many
|
|
* parameters, not all of which make sense within the limited
|
|
* context of this routine. The parameters are required for the
|
|
* Boruvka and local MSF merging steps to interoperate.
|
|
*
|
|
* \param pg The process group on which local minimum spanning
|
|
* forests should be merged. The top (D-1)p/D processes will be
|
|
* eliminated, and a new process subgroup containing p/D processors
|
|
* will be returned. The value D is a constant factor that is
|
|
* currently fixed to 3.
|
|
*
|
|
* \param g The underlying graph whose MSF is being computed. It must model
|
|
* the DistributedGraph concept.
|
|
*
|
|
* \param first_vertex Iterator to the first vertex in the graph
|
|
* that should be considered. While the local MSF merging algorithm
|
|
* typically operates on the entire vertex set, within the hybrid
|
|
* distributed MSF algorithms this will refer to the first
|
|
* supervertex.
|
|
*
|
|
* \param last_vertex The past-the-end iterator for the vertex list.
|
|
*
|
|
* \param edge_list The list of local edges that will be
|
|
* considered. For the p/D processes that remain, this list will
|
|
* contain edges in the MSF known to the vertex after other
|
|
* processes' edge lists have been merged. The edge list must be
|
|
* sorted in order of increasing weight.
|
|
*
|
|
* \param weight Property map containing the weights of each
|
|
* edge. The type of this property map must model
|
|
* ReadablePropertyMap and must support caching.
|
|
*
|
|
* \param global_index Mapping from vertex descriptors to a global
|
|
* index. The type must model ReadablePropertyMap.
|
|
*
|
|
* \param edge_mapper A function object that can remap edge descriptors
|
|
* in the edge list to any alternative edge descriptor. This
|
|
* function object will be the identity function when a pure merging
|
|
* of local MSFs is required, but may be a mapping to a supervertex
|
|
* edge when the local MSF merging occurs on a supervertex
|
|
* graph. This function object saves us the trouble of having to
|
|
* build a supervertex graph adaptor.
|
|
*
|
|
* \param already_local_msf True when the edge list already
|
|
* constitutes a local MSF. If false, Kruskal's algorithm will first
|
|
* be applied to the local edge list to select MSF edges.
|
|
*
|
|
* \returns The process subgroup containing the remaining p/D
|
|
* processes. If the size of this process group is greater than one,
|
|
* the MSF edges contained in the edge list do not constitute an MSF
|
|
* for the entire graph.
|
|
*/
|
|
template<typename ProcessGroup, typename Graph, typename ForwardIterator,
|
|
typename EdgeList, typename WeightMap, typename GlobalIndexMap,
|
|
typename EdgeMapper>
|
|
ProcessGroup
|
|
merge_local_minimum_spanning_trees_step(ProcessGroup pg,
|
|
const Graph& g,
|
|
ForwardIterator first_vertex,
|
|
ForwardIterator last_vertex,
|
|
EdgeList& edge_list,
|
|
WeightMap weight,
|
|
GlobalIndexMap global_index,
|
|
EdgeMapper edge_mapper,
|
|
bool already_local_msf)
|
|
{
|
|
typedef typename ProcessGroup::process_id_type process_id_type;
|
|
typedef typename EdgeList::value_type edge_descriptor;
|
|
typedef typename property_traits<WeightMap>::value_type weight_type;
|
|
typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
|
|
|
|
// The tree factor, often called "D"
|
|
process_id_type const tree_factor = 3;
|
|
process_id_type num_procs = num_processes(pg);
|
|
process_id_type id = process_id(pg);
|
|
process_id_type procs_left = (num_procs + tree_factor - 1) / tree_factor;
|
|
std::size_t n = std::size_t(last_vertex - first_vertex);
|
|
|
|
if (!already_local_msf) {
|
|
// Compute local minimum spanning forest. We only care about the
|
|
// edges in the MSF, because only edges in the local MSF can be in
|
|
// the global MSF.
|
|
std::vector<std::size_t> ranks(n);
|
|
std::vector<vertex_descriptor> parents(n);
|
|
detail::sorted_mutating_kruskal
|
|
(g, first_vertex, last_vertex,
|
|
edge_list, edge_mapper,
|
|
make_iterator_property_map(ranks.begin(), global_index),
|
|
make_iterator_property_map(parents.begin(), global_index));
|
|
}
|
|
|
|
typedef std::pair<edge_descriptor, weight_type> w_edge;
|
|
|
|
// Order edges based on their weights.
|
|
indirect_cmp<WeightMap, std::less<weight_type> > cmp_edge_weight(weight);
|
|
|
|
if (id < procs_left) {
|
|
// The p/D processes that remain will receive local MSF edges from
|
|
// D-1 other processes.
|
|
synchronize(pg);
|
|
for (process_id_type from_id = procs_left + id; from_id < num_procs;
|
|
from_id += procs_left) {
|
|
std::size_t num_incoming_edges;
|
|
receive(pg, from_id, 0, num_incoming_edges);
|
|
if (num_incoming_edges > 0) {
|
|
std::vector<w_edge> incoming_edges(num_incoming_edges);
|
|
receive(pg, from_id, 1, &incoming_edges[0], num_incoming_edges);
|
|
|
|
edge_list.reserve(edge_list.size() + num_incoming_edges);
|
|
for (std::size_t i = 0; i < num_incoming_edges; ++i) {
|
|
cache(weight, incoming_edges[i].first, incoming_edges[i].second);
|
|
edge_list.push_back(incoming_edges[i].first);
|
|
}
|
|
std::inplace_merge(edge_list.begin(),
|
|
edge_list.end() - num_incoming_edges,
|
|
edge_list.end(),
|
|
cmp_edge_weight);
|
|
}
|
|
}
|
|
|
|
// Compute the local MSF from union of the edges in the MSFs of
|
|
// all children.
|
|
std::vector<std::size_t> ranks(n);
|
|
std::vector<vertex_descriptor> parents(n);
|
|
detail::sorted_mutating_kruskal
|
|
(g, first_vertex, last_vertex,
|
|
edge_list, edge_mapper,
|
|
make_iterator_property_map(ranks.begin(), global_index),
|
|
make_iterator_property_map(parents.begin(), global_index));
|
|
} else {
|
|
// The (D-1)p/D processes that are dropping out of further
|
|
// computations merely send their MSF edges to their parent
|
|
// process in the process tree.
|
|
send(pg, id % procs_left, 0, edge_list.size());
|
|
if (edge_list.size() > 0) {
|
|
std::vector<w_edge> outgoing_edges;
|
|
outgoing_edges.reserve(edge_list.size());
|
|
for (std::size_t i = 0; i < edge_list.size(); ++i) {
|
|
outgoing_edges.push_back(std::make_pair(edge_list[i],
|
|
get(weight, edge_list[i])));
|
|
}
|
|
send(pg, id % procs_left, 1, &outgoing_edges[0],
|
|
outgoing_edges.size());
|
|
}
|
|
synchronize(pg);
|
|
}
|
|
|
|
// Return a process subgroup containing the p/D parent processes
|
|
return process_subgroup(pg,
|
|
make_counting_iterator(process_id_type(0)),
|
|
make_counting_iterator(procs_left));
|
|
}
|
|
} // end namespace detail
|
|
|
|
// ---------------------------------------------------------------------
|
|
// Dense Boruvka MSF algorithm
|
|
// ---------------------------------------------------------------------
|
|
template<typename Graph, typename WeightMap, typename OutputIterator,
|
|
typename VertexIndexMap, typename RankMap, typename ParentMap,
|
|
typename SupervertexMap>
|
|
OutputIterator
|
|
dense_boruvka_minimum_spanning_tree(const Graph& g, WeightMap weight_map,
|
|
OutputIterator out,
|
|
VertexIndexMap index_map,
|
|
RankMap rank_map, ParentMap parent_map,
|
|
SupervertexMap supervertex_map)
|
|
{
|
|
using boost::graph::parallel::process_group;
|
|
|
|
typedef typename graph_traits<Graph>::traversal_category traversal_category;
|
|
|
|
BOOST_STATIC_ASSERT((is_convertible<traversal_category*,
|
|
vertex_list_graph_tag*>::value));
|
|
|
|
typedef typename graph_traits<Graph>::vertices_size_type vertices_size_type;
|
|
typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
|
|
typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator;
|
|
typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor;
|
|
|
|
// Don't throw away cached edge weights
|
|
weight_map.set_max_ghost_cells(0);
|
|
|
|
// Initialize the disjoint sets structures
|
|
disjoint_sets<RankMap, ParentMap> dset(rank_map, parent_map);
|
|
vertex_iterator vi, vi_end;
|
|
for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
|
|
dset.make_set(*vi);
|
|
|
|
std::vector<vertex_descriptor> supervertices;
|
|
supervertices.assign(vertices(g).first, vertices(g).second);
|
|
|
|
// Use Kruskal's algorithm to find the minimum spanning forest
|
|
// considering only the local edges. The resulting edges are not
|
|
// necessarily going to be in the final minimum spanning
|
|
// forest. However, any edge not part of the local MSF cannot be a
|
|
// part of the global MSF, so we should have eliminated some edges
|
|
// from consideration.
|
|
std::vector<edge_descriptor> edge_list;
|
|
kruskal_minimum_spanning_tree
|
|
(make_vertex_and_edge_range(g, vertices(g).first, vertices(g).second,
|
|
edges(g).first, edges(g).second),
|
|
std::back_inserter(edge_list),
|
|
boost::weight_map(weight_map).
|
|
vertex_index_map(index_map));
|
|
|
|
// While the number of supervertices is decreasing, keep executing
|
|
// Boruvka steps to identify additional MSF edges. This loop will
|
|
// execute log |V| times.
|
|
vertices_size_type old_num_supervertices;
|
|
do {
|
|
old_num_supervertices = supervertices.size();
|
|
out = detail::boruvka_merge_step(process_group(g), g,
|
|
weight_map, out,
|
|
dset, supervertex_map, supervertices,
|
|
edge_list);
|
|
} while (supervertices.size() < old_num_supervertices);
|
|
|
|
return out;
|
|
}
|
|
|
|
template<typename Graph, typename WeightMap, typename OutputIterator,
|
|
typename VertexIndex>
|
|
OutputIterator
|
|
dense_boruvka_minimum_spanning_tree(const Graph& g, WeightMap weight_map,
|
|
OutputIterator out, VertexIndex i_map)
|
|
{
|
|
typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
|
|
|
|
std::vector<std::size_t> ranks(num_vertices(g));
|
|
std::vector<vertex_descriptor> parents(num_vertices(g));
|
|
std::vector<std::size_t> supervertices(num_vertices(g));
|
|
|
|
return dense_boruvka_minimum_spanning_tree
|
|
(g, weight_map, out, i_map,
|
|
make_iterator_property_map(ranks.begin(), i_map),
|
|
make_iterator_property_map(parents.begin(), i_map),
|
|
make_iterator_property_map(supervertices.begin(), i_map));
|
|
}
|
|
|
|
template<typename Graph, typename WeightMap, typename OutputIterator>
|
|
OutputIterator
|
|
dense_boruvka_minimum_spanning_tree(const Graph& g, WeightMap weight_map,
|
|
OutputIterator out)
|
|
{
|
|
return dense_boruvka_minimum_spanning_tree(g, weight_map, out,
|
|
get(vertex_index, g));
|
|
}
|
|
|
|
// ---------------------------------------------------------------------
|
|
// Merge local MSFs MSF algorithm
|
|
// ---------------------------------------------------------------------
|
|
template<typename Graph, typename WeightMap, typename OutputIterator,
|
|
typename GlobalIndexMap>
|
|
OutputIterator
|
|
merge_local_minimum_spanning_trees(const Graph& g, WeightMap weight,
|
|
OutputIterator out,
|
|
GlobalIndexMap global_index)
|
|
{
|
|
using boost::graph::parallel::process_group_type;
|
|
using boost::graph::parallel::process_group;
|
|
|
|
typedef typename graph_traits<Graph>::traversal_category traversal_category;
|
|
|
|
BOOST_STATIC_ASSERT((is_convertible<traversal_category*,
|
|
vertex_list_graph_tag*>::value));
|
|
|
|
typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor;
|
|
|
|
// Don't throw away cached edge weights
|
|
weight.set_max_ghost_cells(0);
|
|
|
|
// Compute the initial local minimum spanning forests
|
|
std::vector<edge_descriptor> edge_list;
|
|
kruskal_minimum_spanning_tree
|
|
(make_vertex_and_edge_range(g, vertices(g).first, vertices(g).second,
|
|
edges(g).first, edges(g).second),
|
|
std::back_inserter(edge_list),
|
|
boost::weight_map(weight).vertex_index_map(global_index));
|
|
|
|
// Merge the local MSFs from p processes into p/D processes,
|
|
// reducing the number of processes in each step. Continue looping
|
|
// until either (a) the current process drops out or (b) only one
|
|
// process remains in the group. This loop will execute log_D p
|
|
// times.
|
|
typename process_group_type<Graph>::type pg = process_group(g);
|
|
while (pg && num_processes(pg) > 1) {
|
|
pg = detail::merge_local_minimum_spanning_trees_step
|
|
(pg, g, vertices(g).first, vertices(g).second,
|
|
edge_list, weight, global_index,
|
|
detail::identity_function<edge_descriptor>(), true);
|
|
}
|
|
|
|
// Only process 0 has the entire edge list, so emit it to the output
|
|
// iterator.
|
|
if (pg && process_id(pg) == 0) {
|
|
out = std::copy(edge_list.begin(), edge_list.end(), out);
|
|
}
|
|
|
|
synchronize(process_group(g));
|
|
return out;
|
|
}
|
|
|
|
template<typename Graph, typename WeightMap, typename OutputIterator>
|
|
inline OutputIterator
|
|
merge_local_minimum_spanning_trees(const Graph& g, WeightMap weight,
|
|
OutputIterator out)
|
|
{
|
|
return merge_local_minimum_spanning_trees(g, weight, out,
|
|
get(vertex_index, g));
|
|
}
|
|
|
|
// ---------------------------------------------------------------------
|
|
// Boruvka-then-merge MSF algorithm
|
|
// ---------------------------------------------------------------------
|
|
template<typename Graph, typename WeightMap, typename OutputIterator,
|
|
typename GlobalIndexMap, typename RankMap, typename ParentMap,
|
|
typename SupervertexMap>
|
|
OutputIterator
|
|
boruvka_then_merge(const Graph& g, WeightMap weight, OutputIterator out,
|
|
GlobalIndexMap index, RankMap rank_map,
|
|
ParentMap parent_map, SupervertexMap supervertex_map)
|
|
{
|
|
using std::log;
|
|
using boost::graph::parallel::process_group_type;
|
|
using boost::graph::parallel::process_group;
|
|
|
|
typedef typename graph_traits<Graph>::traversal_category traversal_category;
|
|
|
|
BOOST_STATIC_ASSERT((is_convertible<traversal_category*,
|
|
vertex_list_graph_tag*>::value));
|
|
|
|
typedef typename graph_traits<Graph>::vertices_size_type vertices_size_type;
|
|
typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
|
|
typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator;
|
|
typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor;
|
|
|
|
// Don't throw away cached edge weights
|
|
weight.set_max_ghost_cells(0);
|
|
|
|
// Compute the initial local minimum spanning forests
|
|
std::vector<edge_descriptor> edge_list;
|
|
kruskal_minimum_spanning_tree
|
|
(make_vertex_and_edge_range(g, vertices(g).first, vertices(g).second,
|
|
edges(g).first, edges(g).second),
|
|
std::back_inserter(edge_list),
|
|
boost::weight_map(weight).
|
|
vertex_index_map(index));
|
|
|
|
// Initialize the disjoint sets structures for Boruvka steps
|
|
disjoint_sets<RankMap, ParentMap> dset(rank_map, parent_map);
|
|
vertex_iterator vi, vi_end;
|
|
for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
|
|
dset.make_set(*vi);
|
|
|
|
// Construct the initial set of supervertices (all vertices)
|
|
std::vector<vertex_descriptor> supervertices;
|
|
supervertices.assign(vertices(g).first, vertices(g).second);
|
|
|
|
// Continue performing Boruvka merge steps until the number of
|
|
// supervertices reaches |V| / (log_D p)^2.
|
|
const std::size_t tree_factor = 3; // TBD: same as above! should be param
|
|
double log_d_p = log((double)num_processes(process_group(g)))
|
|
/ log((double)tree_factor);
|
|
vertices_size_type target_supervertices =
|
|
vertices_size_type(num_vertices(g) / (log_d_p * log_d_p));
|
|
vertices_size_type old_num_supervertices;
|
|
while (supervertices.size() > target_supervertices) {
|
|
old_num_supervertices = supervertices.size();
|
|
out = detail::boruvka_merge_step(process_group(g), g,
|
|
weight, out, dset,
|
|
supervertex_map, supervertices,
|
|
edge_list);
|
|
if (supervertices.size() == old_num_supervertices)
|
|
return out;
|
|
}
|
|
|
|
// Renumber the supervertices
|
|
for (std::size_t i = 0; i < supervertices.size(); ++i)
|
|
put(supervertex_map, supervertices[i], i);
|
|
|
|
// Merge local MSFs on the supervertices. (D-1)p/D processors drop
|
|
// out each iteration, so this loop executes log_D p times.
|
|
typename process_group_type<Graph>::type pg = process_group(g);
|
|
bool have_msf = false;
|
|
while (pg && num_processes(pg) > 1) {
|
|
pg = detail::merge_local_minimum_spanning_trees_step
|
|
(pg, g, supervertices.begin(), supervertices.end(),
|
|
edge_list, weight, supervertex_map,
|
|
detail::make_supervertex_edge_descriptor(g, dset),
|
|
have_msf);
|
|
have_msf = true;
|
|
}
|
|
|
|
// Only process 0 has the complete list of _supervertex_ MST edges,
|
|
// so emit those to the output iterator. This is not the complete
|
|
// list of edges in the MSF, however: the Boruvka steps in the
|
|
// beginning of the algorithm emitted any edges used to merge
|
|
// supervertices.
|
|
if (pg && process_id(pg) == 0)
|
|
out = std::copy(edge_list.begin(), edge_list.end(), out);
|
|
|
|
synchronize(process_group(g));
|
|
return out;
|
|
}
|
|
|
|
template<typename Graph, typename WeightMap, typename OutputIterator,
|
|
typename GlobalIndexMap>
|
|
inline OutputIterator
|
|
boruvka_then_merge(const Graph& g, WeightMap weight, OutputIterator out,
|
|
GlobalIndexMap index)
|
|
{
|
|
typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
|
|
typedef typename graph_traits<Graph>::vertices_size_type vertices_size_type;
|
|
std::vector<vertices_size_type> ranks(num_vertices(g));
|
|
std::vector<vertex_descriptor> parents(num_vertices(g));
|
|
std::vector<vertices_size_type> supervertex_indices(num_vertices(g));
|
|
|
|
return boruvka_then_merge
|
|
(g, weight, out, index,
|
|
make_iterator_property_map(ranks.begin(), index),
|
|
make_iterator_property_map(parents.begin(), index),
|
|
make_iterator_property_map(supervertex_indices.begin(), index));
|
|
}
|
|
|
|
template<typename Graph, typename WeightMap, typename OutputIterator>
|
|
inline OutputIterator
|
|
boruvka_then_merge(const Graph& g, WeightMap weight, OutputIterator out)
|
|
{ return boruvka_then_merge(g, weight, out, get(vertex_index, g)); }
|
|
|
|
// ---------------------------------------------------------------------
|
|
// Boruvka-mixed-merge MSF algorithm
|
|
// ---------------------------------------------------------------------
|
|
template<typename Graph, typename WeightMap, typename OutputIterator,
|
|
typename GlobalIndexMap, typename RankMap, typename ParentMap,
|
|
typename SupervertexMap>
|
|
OutputIterator
|
|
boruvka_mixed_merge(const Graph& g, WeightMap weight, OutputIterator out,
|
|
GlobalIndexMap index, RankMap rank_map,
|
|
ParentMap parent_map, SupervertexMap supervertex_map)
|
|
{
|
|
using boost::graph::parallel::process_group_type;
|
|
using boost::graph::parallel::process_group;
|
|
|
|
typedef typename graph_traits<Graph>::traversal_category traversal_category;
|
|
|
|
BOOST_STATIC_ASSERT((is_convertible<traversal_category*,
|
|
vertex_list_graph_tag*>::value));
|
|
|
|
typedef typename graph_traits<Graph>::vertices_size_type vertices_size_type;
|
|
typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
|
|
typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator;
|
|
typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor;
|
|
|
|
// Don't throw away cached edge weights
|
|
weight.set_max_ghost_cells(0);
|
|
|
|
// Initialize the disjoint sets structures for Boruvka steps
|
|
disjoint_sets<RankMap, ParentMap> dset(rank_map, parent_map);
|
|
vertex_iterator vi, vi_end;
|
|
for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
|
|
dset.make_set(*vi);
|
|
|
|
// Construct the initial set of supervertices (all vertices)
|
|
std::vector<vertex_descriptor> supervertices;
|
|
supervertices.assign(vertices(g).first, vertices(g).second);
|
|
|
|
// Compute the initial local minimum spanning forests
|
|
std::vector<edge_descriptor> edge_list;
|
|
kruskal_minimum_spanning_tree
|
|
(make_vertex_and_edge_range(g, vertices(g).first, vertices(g).second,
|
|
edges(g).first, edges(g).second),
|
|
std::back_inserter(edge_list),
|
|
boost::weight_map(weight).
|
|
vertex_index_map(index));
|
|
|
|
if (num_processes(process_group(g)) == 1) {
|
|
return std::copy(edge_list.begin(), edge_list.end(), out);
|
|
}
|
|
|
|
// Like the merging local MSFs algorithm and the Boruvka-then-merge
|
|
// algorithm, each iteration of this loop reduces the number of
|
|
// processes by a constant factor D, and therefore we require log_D
|
|
// p iterations. Note also that the number of edges in the edge list
|
|
// decreases geometrically, giving us an efficient distributed MSF
|
|
// algorithm.
|
|
typename process_group_type<Graph>::type pg = process_group(g);
|
|
vertices_size_type old_num_supervertices;
|
|
while (pg && num_processes(pg) > 1) {
|
|
// A single Boruvka step. If this doesn't change anything, we're done
|
|
old_num_supervertices = supervertices.size();
|
|
out = detail::boruvka_merge_step(pg, g, weight, out, dset,
|
|
supervertex_map, supervertices,
|
|
edge_list);
|
|
if (old_num_supervertices == supervertices.size()) {
|
|
edge_list.clear();
|
|
break;
|
|
}
|
|
|
|
// Renumber the supervertices
|
|
for (std::size_t i = 0; i < supervertices.size(); ++i)
|
|
put(supervertex_map, supervertices[i], i);
|
|
|
|
// A single merging of local MSTs, which reduces the number of
|
|
// processes we're using by a constant factor D.
|
|
pg = detail::merge_local_minimum_spanning_trees_step
|
|
(pg, g, supervertices.begin(), supervertices.end(),
|
|
edge_list, weight, supervertex_map,
|
|
detail::make_supervertex_edge_descriptor(g, dset),
|
|
true);
|
|
|
|
}
|
|
|
|
// Only process 0 has the complete edge list, so emit it for the
|
|
// user. Note that list edge list only contains the MSF edges in the
|
|
// final supervertex graph: all of the other edges were used to
|
|
// merge supervertices and have been emitted by the Boruvka steps,
|
|
// although only process 0 has received the complete set.
|
|
if (pg && process_id(pg) == 0)
|
|
out = std::copy(edge_list.begin(), edge_list.end(), out);
|
|
|
|
synchronize(process_group(g));
|
|
return out;
|
|
}
|
|
|
|
template<typename Graph, typename WeightMap, typename OutputIterator,
|
|
typename GlobalIndexMap>
|
|
inline OutputIterator
|
|
boruvka_mixed_merge(const Graph& g, WeightMap weight, OutputIterator out,
|
|
GlobalIndexMap index)
|
|
{
|
|
typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
|
|
typedef typename graph_traits<Graph>::vertices_size_type vertices_size_type;
|
|
std::vector<vertices_size_type> ranks(num_vertices(g));
|
|
std::vector<vertex_descriptor> parents(num_vertices(g));
|
|
std::vector<vertices_size_type> supervertex_indices(num_vertices(g));
|
|
|
|
return boruvka_mixed_merge
|
|
(g, weight, out, index,
|
|
make_iterator_property_map(ranks.begin(), index),
|
|
make_iterator_property_map(parents.begin(), index),
|
|
make_iterator_property_map(supervertex_indices.begin(), index));
|
|
}
|
|
|
|
template<typename Graph, typename WeightMap, typename OutputIterator>
|
|
inline OutputIterator
|
|
boruvka_mixed_merge(const Graph& g, WeightMap weight, OutputIterator out)
|
|
{ return boruvka_mixed_merge(g, weight, out, get(vertex_index, g)); }
|
|
|
|
} // end namespace distributed
|
|
|
|
using distributed::dense_boruvka_minimum_spanning_tree;
|
|
using distributed::merge_local_minimum_spanning_trees;
|
|
using distributed::boruvka_then_merge;
|
|
using distributed::boruvka_mixed_merge;
|
|
|
|
} } // end namespace boost::graph
|
|
|
|
|
|
#endif // BOOST_DEHNE_GOTZ_MIN_SPANNING_TREE_HPP
|