gnss-sim/3rdparty/boost/compute/interop/opencv/core.hpp

142 lines
4.6 KiB
C++

//---------------------------------------------------------------------------//
// Copyright (c) 2013-2014 Kyle Lutz <kyle.r.lutz@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#ifndef BOOST_COMPUTE_INTEROP_OPENCV_CORE_HPP
#define BOOST_COMPUTE_INTEROP_OPENCV_CORE_HPP
#include <opencv2/core/core.hpp>
#include <boost/throw_exception.hpp>
#include <boost/compute/algorithm/copy_n.hpp>
#include <boost/compute/exception/opencl_error.hpp>
#include <boost/compute/image/image2d.hpp>
#include <boost/compute/image/image_format.hpp>
#include <boost/compute/iterator/buffer_iterator.hpp>
namespace boost {
namespace compute {
template<class T>
inline void opencv_copy_mat_to_buffer(const cv::Mat &mat,
buffer_iterator<T> buffer,
command_queue &queue = system::default_queue())
{
BOOST_ASSERT(mat.isContinuous());
::boost::compute::copy_n(
reinterpret_cast<T *>(mat.data), mat.rows * mat.cols, buffer, queue
);
}
template<class T>
inline void opencv_copy_buffer_to_mat(const buffer_iterator<T> buffer,
cv::Mat &mat,
command_queue &queue = system::default_queue())
{
BOOST_ASSERT(mat.isContinuous());
::boost::compute::copy_n(
buffer, mat.cols * mat.rows, reinterpret_cast<T *>(mat.data), queue
);
}
inline void opencv_copy_mat_to_image(const cv::Mat &mat,
image2d &image,
command_queue &queue = system::default_queue())
{
BOOST_ASSERT(mat.data != 0);
BOOST_ASSERT(mat.isContinuous());
BOOST_ASSERT(image.get_context() == queue.get_context());
queue.enqueue_write_image(image, image.origin(), image.size(), mat.data);
}
inline void opencv_copy_image_to_mat(const image2d &image,
cv::Mat &mat,
command_queue &queue = system::default_queue())
{
BOOST_ASSERT(mat.isContinuous());
BOOST_ASSERT(image.get_context() == queue.get_context());
queue.enqueue_read_image(image, image.origin(), image.size(), mat.data);
}
inline image_format opencv_get_mat_image_format(const cv::Mat &mat)
{
switch(mat.type()){
case CV_8UC4:
return image_format(CL_BGRA, CL_UNORM_INT8);
case CV_16UC4:
return image_format(CL_BGRA, CL_UNORM_INT16);
case CV_32F:
return image_format(CL_INTENSITY, CL_FLOAT);
case CV_32FC4:
return image_format(CL_RGBA, CL_FLOAT);
case CV_8UC1:
return image_format(CL_INTENSITY, CL_UNORM_INT8);
}
BOOST_THROW_EXCEPTION(opencl_error(CL_IMAGE_FORMAT_NOT_SUPPORTED));
}
inline cv::Mat opencv_create_mat_with_image2d(const image2d &image,
command_queue &queue = system::default_queue())
{
BOOST_ASSERT(image.get_context() == queue.get_context());
cv::Mat mat;
image_format format = image.get_format();
const cl_image_format *cl_image_format = format.get_format_ptr();
if(cl_image_format->image_channel_data_type == CL_UNORM_INT8 &&
cl_image_format->image_channel_order == CL_BGRA)
{
mat = cv::Mat(image.height(), image.width(), CV_8UC4);
}
else if(cl_image_format->image_channel_data_type == CL_UNORM_INT16 &&
cl_image_format->image_channel_order == CL_BGRA)
{
mat = cv::Mat(image.height(), image.width(), CV_16UC4);
}
else if(cl_image_format->image_channel_data_type == CL_FLOAT &&
cl_image_format->image_channel_order == CL_INTENSITY)
{
mat = cv::Mat(image.height(), image.width(), CV_32FC1);
}
else
{
mat = cv::Mat(image.height(), image.width(), CV_8UC1);
}
opencv_copy_image_to_mat(image, mat, queue);
return mat;
}
inline image2d opencv_create_image2d_with_mat(const cv::Mat &mat,
cl_mem_flags flags,
command_queue &queue = system::default_queue())
{
const context &context = queue.get_context();
const image_format format = opencv_get_mat_image_format(mat);
image2d image(context, mat.cols, mat.rows, format, flags);
opencv_copy_mat_to_image(mat, image, queue);
return image;
}
} // end compute namespace
} // end boost namespace
#endif // BOOST_COMPUTE_INTEROP_OPENCV_CORE_HPP