gnss-sim/3rdparty/boost/math/interpolators/vector_barycentric_rational...

83 lines
2.8 KiB
C++
Raw Normal View History

2024-12-24 16:15:51 +00:00
/*
* Copyright Nick Thompson, 2019
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*
* Exactly the same as barycentric_rational.hpp, but delivers values in $\mathbb{R}^n$.
* In some sense this is trivial, since each component of the vector is computed in exactly the same
* as would be computed by barycentric_rational.hpp. But this is a bit more efficient and convenient.
*/
#ifndef BOOST_MATH_INTERPOLATORS_VECTOR_BARYCENTRIC_RATIONAL_HPP
#define BOOST_MATH_INTERPOLATORS_VECTOR_BARYCENTRIC_RATIONAL_HPP
#include <memory>
#include <boost/math/interpolators/detail/vector_barycentric_rational_detail.hpp>
namespace boost{ namespace math{ namespace interpolators{
template<class TimeContainer, class SpaceContainer>
class vector_barycentric_rational
{
public:
using Real = typename TimeContainer::value_type;
using Point = typename SpaceContainer::value_type;
vector_barycentric_rational(TimeContainer&& times, SpaceContainer&& points, size_t approximation_order = 3);
void operator()(Point& x, Real t) const;
// I have validated using google benchmark that returning a value is no more expensive populating it,
// at least for Eigen vectors with known size at compile-time.
// This is kinda a weird thing to discover since it goes against the advice of basically every high-performance computing book.
Point operator()(Real t) const {
Point p;
this->operator()(p, t);
return p;
}
void prime(Point& dxdt, Real t) const {
Point x;
m_imp->eval_with_prime(x, dxdt, t);
}
Point prime(Real t) const {
Point p;
this->prime(p, t);
return p;
}
void eval_with_prime(Point& x, Point& dxdt, Real t) const {
m_imp->eval_with_prime(x, dxdt, t);
return;
}
std::pair<Point, Point> eval_with_prime(Real t) const {
Point x;
Point dxdt;
m_imp->eval_with_prime(x, dxdt, t);
return {x, dxdt};
}
private:
std::shared_ptr<detail::vector_barycentric_rational_imp<TimeContainer, SpaceContainer>> m_imp;
};
template <class TimeContainer, class SpaceContainer>
vector_barycentric_rational<TimeContainer, SpaceContainer>::vector_barycentric_rational(TimeContainer&& times, SpaceContainer&& points, size_t approximation_order):
m_imp(std::make_shared<detail::vector_barycentric_rational_imp<TimeContainer, SpaceContainer>>(std::move(times), std::move(points), approximation_order))
{
return;
}
template <class TimeContainer, class SpaceContainer>
void vector_barycentric_rational<TimeContainer, SpaceContainer>::operator()(typename SpaceContainer::value_type& p, typename TimeContainer::value_type t) const
{
m_imp->operator()(p, t);
return;
}
}}}
#endif