gnss-sim/3rdparty/boost/math/interpolators/pchip.hpp

132 lines
4.1 KiB
C++
Raw Normal View History

2024-12-24 16:15:51 +00:00
// Copyright Nick Thompson, 2020
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_INTERPOLATORS_PCHIP_HPP
#define BOOST_MATH_INTERPOLATORS_PCHIP_HPP
#include <sstream>
#include <memory>
#include <boost/math/interpolators/detail/cubic_hermite_detail.hpp>
namespace boost {
namespace math {
namespace interpolators {
template<class RandomAccessContainer>
class pchip {
public:
using Real = typename RandomAccessContainer::value_type;
pchip(RandomAccessContainer && x, RandomAccessContainer && y,
Real left_endpoint_derivative = std::numeric_limits<Real>::quiet_NaN(),
Real right_endpoint_derivative = std::numeric_limits<Real>::quiet_NaN())
{
using std::isnan;
if (x.size() < 4)
{
std::ostringstream oss;
oss << __FILE__ << ":" << __LINE__ << ":" << __func__;
oss << " This interpolator requires at least four data points.";
throw std::domain_error(oss.str());
}
RandomAccessContainer s(x.size(), std::numeric_limits<Real>::quiet_NaN());
if (isnan(left_endpoint_derivative))
{
// If the derivative is not specified, this seems as good a choice as any.
// In particular, it satisfies the monotonicity constraint 0 <= |y'[0]| < 4Delta_i,
// where Delta_i is the secant slope:
s[0] = (y[1]-y[0])/(x[1]-x[0]);
}
else
{
s[0] = left_endpoint_derivative;
}
for (decltype(s.size()) k = 1; k < s.size()-1; ++k) {
Real hkm1 = x[k] - x[k-1];
Real dkm1 = (y[k] - y[k-1])/hkm1;
Real hk = x[k+1] - x[k];
Real dk = (y[k+1] - y[k])/hk;
Real w1 = 2*hk + hkm1;
Real w2 = hk + 2*hkm1;
if ( (dk > 0 && dkm1 < 0) || (dk < 0 && dkm1 > 0) || dk == 0 || dkm1 == 0)
{
s[k] = 0;
}
else
{
// See here:
// https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/moler/interp.pdf
// Un-numbered equation just before Section 3.5:
s[k] = (w1+w2)/(w1/dkm1 + w2/dk);
}
}
auto n = s.size();
if (isnan(right_endpoint_derivative))
{
s[n-1] = (y[n-1]-y[n-2])/(x[n-1] - x[n-2]);
}
else
{
s[n-1] = right_endpoint_derivative;
}
impl_ = std::make_shared<detail::cubic_hermite_detail<RandomAccessContainer>>(std::move(x), std::move(y), std::move(s));
}
Real operator()(Real x) const {
return impl_->operator()(x);
}
Real prime(Real x) const {
return impl_->prime(x);
}
friend std::ostream& operator<<(std::ostream & os, const pchip & m)
{
os << *m.impl_;
return os;
}
void push_back(Real x, Real y) {
using std::abs;
using std::isnan;
if (x <= impl_->x_.back()) {
throw std::domain_error("Calling push_back must preserve the monotonicity of the x's");
}
impl_->x_.push_back(x);
impl_->y_.push_back(y);
impl_->dydx_.push_back(std::numeric_limits<Real>::quiet_NaN());
auto n = impl_->size();
impl_->dydx_[n-1] = (impl_->y_[n-1]-impl_->y_[n-2])/(impl_->x_[n-1] - impl_->x_[n-2]);
// Now fix s_[n-2]:
auto k = n-2;
Real hkm1 = impl_->x_[k] - impl_->x_[k-1];
Real dkm1 = (impl_->y_[k] - impl_->y_[k-1])/hkm1;
Real hk = impl_->x_[k+1] - impl_->x_[k];
Real dk = (impl_->y_[k+1] - impl_->y_[k])/hk;
Real w1 = 2*hk + hkm1;
Real w2 = hk + 2*hkm1;
if ( (dk > 0 && dkm1 < 0) || (dk < 0 && dkm1 > 0) || dk == 0 || dkm1 == 0)
{
impl_->dydx_[k] = 0;
}
else
{
impl_->dydx_[k] = (w1+w2)/(w1/dkm1 + w2/dk);
}
}
private:
std::shared_ptr<detail::cubic_hermite_detail<RandomAccessContainer>> impl_;
};
}
}
}
#endif