78 lines
3.0 KiB
C++
78 lines
3.0 KiB
C++
|
// Copyright 2022 Jay Gohil, Hans Dembinski
|
||
|
//
|
||
|
// Distributed under the Boost Software License, version 1.0.
|
||
|
// (See accompanying file LICENSE_1_0.txt
|
||
|
// or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||
|
|
||
|
#ifndef BOOST_HISTOGRAM_UTILITY_JEFFREYS_INTERVAL_HPP
|
||
|
#define BOOST_HISTOGRAM_UTILITY_JEFFREYS_INTERVAL_HPP
|
||
|
|
||
|
#include <boost/histogram/fwd.hpp>
|
||
|
#include <boost/histogram/utility/binomial_proportion_interval.hpp>
|
||
|
#include <boost/math/distributions/beta.hpp>
|
||
|
#include <cmath>
|
||
|
|
||
|
namespace boost {
|
||
|
namespace histogram {
|
||
|
namespace utility {
|
||
|
|
||
|
/**
|
||
|
Jeffreys interval.
|
||
|
|
||
|
This is the Bayesian credible interval with a Jeffreys prior. Although it has a
|
||
|
Bayesian derivation, it has good coverage. The interval boundaries are close to the
|
||
|
Wilson interval. A special property of this interval is that it is equal-tailed; the
|
||
|
probability of the true value to be above or below the interval is approximately equal.
|
||
|
|
||
|
To avoid coverage probability tending to zero when the fraction approaches 0 or 1,
|
||
|
this implementation uses a modification described in section 4.1.2 of the
|
||
|
paper by L.D. Brown, T.T. Cai, A. DasGupta, Statistical Science 16 (2001) 101-133,
|
||
|
doi:10.1214/ss/1009213286.
|
||
|
*/
|
||
|
template <class ValueType>
|
||
|
class jeffreys_interval : public binomial_proportion_interval<ValueType> {
|
||
|
public:
|
||
|
using value_type = typename jeffreys_interval::value_type;
|
||
|
using interval_type = typename jeffreys_interval::interval_type;
|
||
|
|
||
|
/** Construct Jeffreys interval computer.
|
||
|
|
||
|
@param cl Confidence level for the interval. The default value produces a
|
||
|
confidence level of 68 % equivalent to one standard deviation. Both `deviation` and
|
||
|
`confidence_level` objects can be used to initialize the interval.
|
||
|
*/
|
||
|
explicit jeffreys_interval(confidence_level cl = deviation{1}) noexcept
|
||
|
: alpha_half_{static_cast<value_type>(0.5 - 0.5 * static_cast<double>(cl))} {}
|
||
|
|
||
|
using binomial_proportion_interval<ValueType>::operator();
|
||
|
|
||
|
/** Compute interval for given number of successes and failures.
|
||
|
|
||
|
@param successes Number of successful trials.
|
||
|
@param failures Number of failed trials.
|
||
|
*/
|
||
|
interval_type operator()(value_type successes, value_type failures) const noexcept {
|
||
|
// See L.D. Brown, T.T. Cai, A. DasGupta, Statistical Science 16 (2001) 101-133,
|
||
|
// doi:10.1214/ss/1009213286, section 4.1.2.
|
||
|
const value_type half{0.5};
|
||
|
const value_type total = successes + failures;
|
||
|
|
||
|
// if successes or failures are 0, modified interval is equal to Clopper-Pearson
|
||
|
if (successes == 0) return {0, 1 - std::pow(alpha_half_, 1 / total)};
|
||
|
if (failures == 0) return {std::pow(alpha_half_, 1 / total), 1};
|
||
|
|
||
|
math::beta_distribution<value_type> beta(successes + half, failures + half);
|
||
|
const value_type a = successes == 1 ? 0 : math::quantile(beta, alpha_half_);
|
||
|
const value_type b = failures == 1 ? 1 : math::quantile(beta, 1 - alpha_half_);
|
||
|
return {a, b};
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
value_type alpha_half_;
|
||
|
};
|
||
|
|
||
|
} // namespace utility
|
||
|
} // namespace histogram
|
||
|
} // namespace boost
|
||
|
|
||
|
#endif
|