83 lines
3.2 KiB
C++
83 lines
3.2 KiB
C++
|
// Copyright 2022 Jay Gohil, Hans Dembinski
|
||
|
//
|
||
|
// Distributed under the Boost Software License, version 1.0.
|
||
|
// (See accompanying file LICENSE_1_0.txt
|
||
|
// or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||
|
|
||
|
#ifndef BOOST_HISTOGRAM_UTILITY_CLOPPER_PEARSON_INTERVAL_HPP
|
||
|
#define BOOST_HISTOGRAM_UTILITY_CLOPPER_PEARSON_INTERVAL_HPP
|
||
|
|
||
|
#include <boost/histogram/fwd.hpp>
|
||
|
#include <boost/histogram/utility/binomial_proportion_interval.hpp>
|
||
|
#include <boost/math/distributions/beta.hpp>
|
||
|
#include <cmath>
|
||
|
|
||
|
namespace boost {
|
||
|
namespace histogram {
|
||
|
namespace utility {
|
||
|
|
||
|
/**
|
||
|
Clopper-Pearson interval.
|
||
|
|
||
|
This is the classic frequentist interval obtained with the Neyman construction.
|
||
|
It is therefore often called the 'exact' interval. It is guaranteed to have at least the
|
||
|
requested confidence level for all values of the fraction.
|
||
|
|
||
|
The interval is wider than others that produce coverage closer to the expected
|
||
|
confidence level over a random ensemble of factions. The Clopper-Pearson interval
|
||
|
essentially always overcovers for such a random ensemble, which is undesirable in
|
||
|
practice. The Clopper-Pearson interval is recommended when it is important to be
|
||
|
conservative, but the Wilson interval should be preferred in most applications.
|
||
|
|
||
|
C. Clopper, E.S. Pearson (1934), Biometrika 26 (4): 404-413.
|
||
|
doi:10.1093/biomet/26.4.404.
|
||
|
*/
|
||
|
template <class ValueType>
|
||
|
class clopper_pearson_interval : public binomial_proportion_interval<ValueType> {
|
||
|
public:
|
||
|
using value_type = typename clopper_pearson_interval::value_type;
|
||
|
using interval_type = typename clopper_pearson_interval::interval_type;
|
||
|
|
||
|
/** Construct Clopper-Pearson interval computer.
|
||
|
|
||
|
@param cl Confidence level for the interval. The default value produces a
|
||
|
confidence level of 68 % equivalent to one standard deviation. Both `deviation` and
|
||
|
`confidence_level` objects can be used to initialize the interval.
|
||
|
*/
|
||
|
explicit clopper_pearson_interval(confidence_level cl = deviation{1}) noexcept
|
||
|
: alpha_half_{static_cast<value_type>(0.5 - 0.5 * static_cast<double>(cl))} {}
|
||
|
|
||
|
using binomial_proportion_interval<ValueType>::operator();
|
||
|
|
||
|
/** Compute interval for given number of successes and failures.
|
||
|
|
||
|
@param successes Number of successful trials.
|
||
|
@param failures Number of failed trials.
|
||
|
*/
|
||
|
interval_type operator()(value_type successes, value_type failures) const noexcept {
|
||
|
// analytical solution when successes or failures are zero
|
||
|
// T. Mans (2014), Electronic Journal of Statistics. 8 (1): 817-840.
|
||
|
// arXiv:1303.1288. doi:10.1214/14-EJS909.
|
||
|
const value_type total = successes + failures;
|
||
|
if (successes == 0) return {0, 1 - std::pow(alpha_half_, 1 / total)};
|
||
|
if (failures == 0) return {std::pow(alpha_half_, 1 / total), 1};
|
||
|
|
||
|
// Source:
|
||
|
// https://en.wikipedia.org/wiki/
|
||
|
// Binomial_proportion_confidence_interval#Clopper%E2%80%93Pearson_interval
|
||
|
math::beta_distribution<value_type> beta_a(successes, failures + 1);
|
||
|
const value_type a = math::quantile(beta_a, alpha_half_);
|
||
|
math::beta_distribution<value_type> beta_b(successes + 1, failures);
|
||
|
const value_type b = math::quantile(beta_b, 1 - alpha_half_);
|
||
|
return {a, b};
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
value_type alpha_half_;
|
||
|
};
|
||
|
|
||
|
} // namespace utility
|
||
|
} // namespace histogram
|
||
|
} // namespace boost
|
||
|
|
||
|
#endif
|